The European Physical Journal E

, Volume 24, Issue 2, pp 201–210 | Cite as

Fractal aggregates induced by liposome-liposome interaction in the presence of Ca2+

  • J. Sabın
  • G. Prieto
  • J. M. Ruso
  • F. SarmientoEmail author
Regular Article


We present a study of the fractal dimension of clusters of large unilamellar vesicles (LUVs) formed by egg yolk phosphatidylcholine (EYPC), dimyristoylphosphocholine (DMPC) and dipalmitoylphosphocholine (DPPC) induced by Ca2+ . Fractal dimensions were calculated by application of two methods, measuring the angular dependency of the light scattered by the clusters and following the evolution of the cluster size. In all cases, the fractal dimensions fell in the range from 2.1 to 1.8, corresponding to two regimes: diffusion-limited cluster aggregation (DLCA) and reaction-limited cluster aggregation (RLCA). Whereas DMPC clusters showed a typical transition from the RLCA to the DLCA aggregation, EYPC exhibited an unusual behaviour, since the aggregation was limited for a higher concentration than the critical aggregation concentration. The behaviour of DPPC was intermediate, with a transition from the RLCA to the DLCA regimes with cluster sizes depending on Ca2+ concentration. Studies on the reversibility of the aggregates show that EYPC and DPPC clusters can be re-dispersed by dilution with water. DMPC does not present reversibility. Reversibility is evidence of the existence of secondary minima in the DLVO potential between two liposomes. To predict these secondary minima, a correction of the DLVO model was necessary taking into account a repulsive force of hydration.


87.16.Dg Membranes, bilayers, and vesicles 05.45.Df Fractals 89.75.-k Complex systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.S. Langer, H. Mueller-Krumbhaar, Acta Metall. 26, 1681 (1978).CrossRefGoogle Scholar
  2. 2.
    D.N. Sutherland, J. Colloid Interface Sci. 25, 373 (1967).CrossRefGoogle Scholar
  3. 3.
    P. Manneville, L. de Seze, in Numerical Methods in the Study of Critical Phenomena, edited by I. della Dora, J. Demangeot, B. Lacolle (Springer-Verlag, Berlin, 1983).Google Scholar
  4. 4.
    P.J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, 1983).Google Scholar
  5. 5.
    T. Williams, R. Bjerknes, Nature 236, 19 (1972).CrossRefADSGoogle Scholar
  6. 6.
    S.K. Friedlander, Smoke, Dust and Haze: Fundamentals of Aerosol Behaviour (Wiley, New York, 1977).Google Scholar
  7. 7.
    S.R. Forrest, T.A. Witten, J. Phys. A: Math. Gen. 12, L109 (1979).Google Scholar
  8. 8.
    T.A. Witten, L.M. Sander, Phys. Rev. Lett. 47, 1400 (1981).CrossRefADSGoogle Scholar
  9. 9.
    B.B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, Cal., 1982).Google Scholar
  10. 10.
    T.A. Witten, L.M. Sander, Phys. Rev. B 27, 5686 (1983).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    P. Meakin, Phys. Rev. Lett. 51, 1119 (1983).CrossRefADSGoogle Scholar
  12. 12.
    M. Eden, Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics and Probability, edited by F. Neyman (University of California Press, Berkeley, 1961) p. 223.Google Scholar
  13. 13.
    M. Rottereau, J.C. Gimel, T. Nicolai, D. Durand, Eur. Phys. J. E 15, 133 (2004).CrossRefGoogle Scholar
  14. 14.
    M. Rottereau, J.C. Gimel, T. Nicolai, D. Durand, Eur. Phys. J. E 15, 141 (2004).CrossRefGoogle Scholar
  15. 15.
    N. Lynch, P. Kilpatrick, G. Carbonell, Biotechnol. Bioeng. 50, 151 (1996).CrossRefMathSciNetGoogle Scholar
  16. 16.
    M.T. Roy, M. Gallardo, J. Estelrich, J. Colloid Interface Sci. 206, 512 (1998).CrossRefGoogle Scholar
  17. 17.
    D.D. Lasic, Liposomes. From Physics to Applications (Elsevier, Amsterdam, 1993).Google Scholar
  18. 18.
    R.M. Fielding, Clin. Pharmacokinet. 21, 155 (1991).Google Scholar
  19. 19.
    M. Costuleanu, E. Brailoiu, C.M. Filipeanu, O. Baltatu, S. Slatineanu, L. Saila, L.M. Nechifor, D.D. Branisteanu, Eur. J. Pharmacol. 281, 89 (1995).CrossRefGoogle Scholar
  20. 20.
    C. Karau, M. Petszulat, P.C. Schmit, Int. J. Pharm. 128, 89 (1996).CrossRefGoogle Scholar
  21. 21.
    D.D. Lasic, H. Strey, M.C. Stuart, R. Podgornic, P.M. Frederic, J. Am. Chem. Soc. 119, 832 (1997).CrossRefGoogle Scholar
  22. 22.
    C. Altenbach, J. Seeling, Biochemistry 23, 3913 (1984).CrossRefGoogle Scholar
  23. 23.
    M. Roux, M. Bloom, Biochemistry 29, 7077 (1990).CrossRefGoogle Scholar
  24. 24.
    J. Seeling, 14, 353 (1990).Google Scholar
  25. 25.
    K. Satoh, Biochim. Biophys. Acta 1239, 239 (1995).CrossRefGoogle Scholar
  26. 26.
    R.A. Böckmann, H. Grubmüller, Angew. Chem. Int. Ed. 43, 1021 (2004).CrossRefGoogle Scholar
  27. 27.
    C.G. Sinn, M. Antonietti, R. Dimova, Colloids Surf. A. Physicochem. Eng. Aspects 282-283, 410 (2006).Google Scholar
  28. 28.
    B.V. Derjaguin, L.D. Landau, Acta Physicochim. URRS 14, 633 (1941).Google Scholar
  29. 29.
    E.J.B. Verwey, J.Th.G. Overbeck, Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948).Google Scholar
  30. 30.
    M.Y. Lin, H.M. Lindsay, D.A. Weitz, R.C. Ball, R. Klein, P. Meakin, Phys. Rev. A 41, 2005 (1990).CrossRefADSGoogle Scholar
  31. 31.
    J.L. Burn, Y. Yan, G.J. Jamenson, S. Biggs, Langmuir 13, 6413 (1997).CrossRefGoogle Scholar
  32. 32.
    J. Martin, B. Ackerson, Phys. Rev. A 31, 1180 (1985).CrossRefADSGoogle Scholar
  33. 33.
    S. Tang, Colloids Surf. A. Physicochem. Eng. Aspects 157, 185 (1999).CrossRefGoogle Scholar
  34. 34.
    K. Onuma, A. Oyane, K. Tsutsui, K. Tanaka, G. Treboux, N. Kanzaki, A. Ito, J. Phys. Chem. B 104, 10563 (2000).CrossRefGoogle Scholar
  35. 35.
    J. Sabín, J.M. Ruso, G. Prieto, P. Messina, F. Sarmiento, Phys. Rev. E 76, 011408 (2007).CrossRefADSGoogle Scholar
  36. 36.
    M.C. Luzardo, G. Peltzer, E.A. Disalvo, Langmuir 14, 5858 (1998).CrossRefGoogle Scholar
  37. 37.
    O. Zschörnig, W. Richter, G. Paasche, K. Arnold, Colloid Polym. Sci. 278, 637 (2000).CrossRefGoogle Scholar
  38. 38.
    R.J Hunter, Foundations of the Colloid Science (Oxford University Press, New York) Chapt. 12, p. 603.Google Scholar
  39. 39.
    J. Sabín, G. Prieto, P.V. Messina, J.M. Ruso, R. Hidalgo-Álvarez, F. Sarmiento, Langmuir 21, 10968 (2005).CrossRefGoogle Scholar
  40. 40.
    T. Inoue, H. Minami, R. Shimozawa, G. Sugihara, J. Colloid Interface Sci. 152, 493 (1992).CrossRefGoogle Scholar
  41. 41.
    H. Matsumura, K. Watanabe, K. Furusawa, Colloids Surf. A. Physicochem. Eng. Aspects 98, 175 (1995).CrossRefGoogle Scholar
  42. 42.
    R.R.C. New, Liposomes: A Practical Approach (Oxford University Press, New York).Google Scholar
  43. 43.
    R. Tadmor, J. Phys.: Condens. Matter 13, L195 (2001).Google Scholar
  44. 44.
    H.C. Hamaker, Recl. Trav. Chim. Pays-Bas 55, 1015 (1936).Google Scholar
  45. 45.
    H.C. Hamaker, Recl. Trav. Chim. Pays-Bas 56, 3 (1937).Google Scholar
  46. 46.
    E. Matijevic, K.G. Mathai, R.H. Ottewill, M. Kerker, J. Phys. Chem. 65, 826 (1961).CrossRefGoogle Scholar
  47. 47.
    B. Vincent, H. Bijsterbosch, J. Lyklema, J. Colloid Interface Sci. 37, 171 (1970).CrossRefGoogle Scholar
  48. 48.
    D. Bastos, F.J. de las Nieves, J. Colloid Interface Sci. 272, 592 (1994).Google Scholar
  49. 49.
    J. Lyklema, J. Colloid Interface Sci. 53, 242 (1977).CrossRefGoogle Scholar
  50. 50.
    L.J. Lis, M. McAlister, N. Fuller, R.P. Rand, Biophys. J. 37, 657 (1982). Google Scholar
  51. 51.
    J. Wilzschut, D. Hoekstra, Chem. Phys. Lipids 40, 156 (1986).Google Scholar
  52. 52.
    D. Papahadjopoulos, W.J. Vail, C. Newton, S. Nir, K. Jacobson, G. Poste, R. Lazo, Biochim. Biophys. Acta 465, 579 (1977).CrossRefGoogle Scholar
  53. 53.
    S. Ohki, Biochim. Biophys. Acta 689, 1 (1982).CrossRefGoogle Scholar
  54. 54.
    D. Papahadjopoulos, S. Nir, N. Düzgünes, J. Bioenerg. Biomembr. 22, 157 (1989).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2007

Authors and Affiliations

  • J. Sabın
    • 1
  • G. Prieto
    • 1
  • J. M. Ruso
    • 1
  • F. Sarmiento
    • 1
    Email author
  1. 1.Biophysics and Interfaces Group, Department of Applied Physics, Faculty of PhysicsUniversity of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations