Advertisement

The European Physical Journal E

, Volume 24, Issue 2, pp 185–191 | Cite as

Fluctuating semiflexible polymer ribbon constrained to a ring

  • K. AlimEmail author
  • E. Frey
Regular Article

Abstract.

Twist stiffness and an asymmetric bending stiffness of a polymer or a polymer bundle is captured by the elastic ribbon model. We investigate the effects a ring geometry induces to a thermally fluctuating ribbon, finding bend-bend coupling in addition to twist-bend coupling. Furthermore, due to the geometric constraint the polymer's effective bending stiffness increases. A new parameter for experimental investigations of polymer bundles is proposed: the mean square diameter of a ribbonlike ring, which is determined analytically in the semiflexible limit. Monte Carlo simulations are performed which affirm the model's prediction up to high flexibility.

PACS.

87.15.Aa Theory and modeling; computer simulation 87.15.Ya Fluctuations 36.20.Ey Conformation (statistics and dynamics) 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.C. Adams, Curr. Opin. Cell Biol. 16, 590 (2004).CrossRefGoogle Scholar
  2. 2.
    J.R. Bartles, Curr. Opin. Cell Biol. 12, 72 (2000).CrossRefGoogle Scholar
  3. 3.
    M.S. Tilney, L.G. Tilney, R.E. Stephens, C. Merte, D. Drenckhahn, D.A. Cotanche, A. Bretscher, J. Cell Biol. 109, 1711 (1989).CrossRefGoogle Scholar
  4. 4.
    C.S. Lin, W.Y. Shen, Z.P. Chen, Y.H. Tu, P. Matsudaira, Mol. Cell. Biol. 14, 2457 (1994).Google Scholar
  5. 5.
    M.M.A.E. Claessens, M. Bathe, E. Frey, A.R. Bausch, Nat. Mater. 5, 748 (2006).CrossRefADSGoogle Scholar
  6. 6.
    O. Kratky, G. Porod, Recl. Trav. Chim. 68, 1106 (1949).Google Scholar
  7. 7.
    N. Saitô, K. Takahashi, Y. Yunoki, J. Phys. Soc. Jpn. 22, 219 (1967).CrossRefADSGoogle Scholar
  8. 8.
    L.D. Landau, E.M. Lifschitz, Theory of Elasticity (Pergamon Press, Oxford, 1970).Google Scholar
  9. 9.
    R. Everaers, R. Bundschuh, K. Kremer, Europhys. Lett. 29, 263 (1995).CrossRefGoogle Scholar
  10. 10.
    T.B. Liverpool, R. Golestanian, K. Kremer, Phys. Rev. Lett. 80, 406 (1998).CrossRefADSGoogle Scholar
  11. 11.
    R. Golestanian, T.B. Liverpool, Phys. Rev. E 62, 5488 (2000).CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    B. Mergell, M.R. Ejtehadi, R. Everaers, Phys. Rev. E 66, 011903 (2002).CrossRefADSGoogle Scholar
  13. 13.
    C. Heussinger, M. Bathe, E. Frey, Phys. Rev. Lett. 99, 048101 (2007).CrossRefADSGoogle Scholar
  14. 14.
    M. Bathe, C. Heussinger, M.M.A.E. Claessens, A.R. Bausch, E. Frey, submitted to Biophys. J. (2007).Google Scholar
  15. 15.
    C.J. Benham, S.P. Mielke, Annu. Rev. Biomed. Eng. 7, 21 (2005) and references therein.CrossRefGoogle Scholar
  16. 16.
    J. Shimada, H. Yamakawa, Biopolymers 27, 657 (1988).CrossRefGoogle Scholar
  17. 17.
    J.E. Hearst, N.G. Hunt, J. Chem. Phys. 95, 9322 (1991).CrossRefADSGoogle Scholar
  18. 18.
    K.V. Klenin, A.V. Vologodskii, V.V. Anshelevich, A.M. Dykhne, M.D. Frankkamenetskii, J. Mol. Biol. 217, 413 (1991).CrossRefGoogle Scholar
  19. 19.
    S. Panyukov, Y. Rabin, Phys. Rev. E 64, 011909 (2001).CrossRefADSGoogle Scholar
  20. 20.
    W.R. Bauer, R.A. Lund, J.H. White, Proc. Natl. Acad. Sci. U.S.A. 90, 833 (1993). CrossRefADSGoogle Scholar
  21. 21.
    T.E. Cloutier, J. Widom, Proc. Natl. Acad. Sci. U.S.A. 102, 3645 (2005).CrossRefADSGoogle Scholar
  22. 22.
    M. Elbaum, D.K. Fygenson, A. Libchaber, Phys. Rev. Lett. 76, 4078 (1996).CrossRefADSGoogle Scholar
  23. 23.
    J.H. White, Am. J. Math. 91, 693 (1969).zbMATHCrossRefGoogle Scholar
  24. 24.
    F.B. Fuller, Proc. Natl. Acad. Sci. U.S.A. 68, 815 (1971).zbMATHCrossRefADSMathSciNetGoogle Scholar
  25. 25.
    K. Alim, E. Frey, Phys. Rev. Lett. 99, 198102 (2007).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2007

Authors and Affiliations

  1. 1.Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of PhysicsLudwig-Maximilians-Universität MünchenMünchenGermany

Personalised recommendations