The European Physical Journal E

, Volume 24, Issue 2, pp 109–117 | Cite as

Statics and dynamics of adhesion between two soap bubbles

Regular Article

Abstract.

An original set-up is used to study the adhesive properties of two hemispherical soap bubbles put into contact. The contact angle at the line connecting the three films is extracted by image analysis of the bubbles profiles. After the initial contact, the angle rapidly reaches a static value slightly larger than the standard 120° angle expected from Plateau rule. This deviation is consistent with previous experimental and theoretical studies: it can be quantitatively predicted by taking into account the finite size of the Plateau border (the liquid volume trapped at the vertex) in the free energy minimization. The visco-elastic adhesion properties of the bubbles are further explored by measuring the deviation Δθd(t) of the contact angle from the static value as the distance between the two bubbles supports is sinusoidally modulated. It is found to linearly increase with Δr c/r c , where rc is the radius of the central film and Δr c the amplitude of modulation of this length induced by the displacement of the supports. The in-phase and out-of-phase components of Δθd(t) with the imposed modulation frequency are systematically probed, which reveals a transition from a viscous to an elastic response of the system with a crossover pulsation of the order 1rad · s^-1. Independent interfacial rheological measurements, obtained from an oscillating bubble experiment, allow us to develop a model of dynamic adhesion which is confronted to our experimental results. The relevance of such adhesive dynamic properties to the rheology of foams is briefly discussed using a perturbative approach to the Princen 2D model of foams.

PACS.

47.55.D- Drops and bubbles 47.55.dk Surfactant effects 83.80.Iz Emulsions and foams 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.A. Khan, C.A. Schnepper, R.C. Armstrong, J. Rheol. 32, 69 (1988).CrossRefGoogle Scholar
  2. 2.
    D. Weaire, S. Hutzler, The Physics of Foams (Oxford University Press, New York, 1999).Google Scholar
  3. 3.
    R. Höhler, S. Cohen-Addad, J. Phys.: Condens. Matter 17, R1041 (2005).Google Scholar
  4. 4.
    D. Buzza, C.Y. Lu, M. Cates, J. Phys. II 5, 37 (1995).CrossRefADSGoogle Scholar
  5. 5.
    L. Schwartz, H. Princen, J. Colloid Interface Sci. 118, 201 (1987).CrossRefGoogle Scholar
  6. 6.
    J. Lucassen, M. Van den Tempel, J. Colloid Interface Sci. 41, 491 (1972).CrossRefGoogle Scholar
  7. 7.
    J. Lucassen, M. Van den Tempel, Chem. Eng. Sci. 27, 1283 (1972).CrossRefGoogle Scholar
  8. 8.
    V. Bergeron, J. Phys.: Condens. Matter 11, R215 (1999).Google Scholar
  9. 9.
    H. Fruhner, K.D. Wantke, Colloids Surf. A: Physicochem. Eng. Aspects 114, 53 (1996).CrossRefGoogle Scholar
  10. 10.
    H. Fruhner, K.D. Wantke, K. Lunkenheimer, Colloids Surf. A: Physicochem. Eng. Aspects 162, 193 (1999).CrossRefGoogle Scholar
  11. 11.
    K.D. Wantke, H. Fruhner, J. Colloid Interface Sci. 237, 185 (2001).CrossRefGoogle Scholar
  12. 12.
    P. Aussillous, D. Quéré, Europhys. Lett. 59, 370 (2002).CrossRefADSGoogle Scholar
  13. 13.
    I. Cantat, R. Delannay, Phys. Rev. E 67, 031501 (2003).CrossRefADSGoogle Scholar
  14. 14.
    N. Denkov, V. Subramanian, D. Gurovich, A. Lips, Colloids Surf. A: Physicochem. Eng. Aspects 263, 129 (2005).CrossRefGoogle Scholar
  15. 15.
    E. Terriac, J. Etrillard, I. Cantat, Europhys. Lett. 74, 909 (2006).CrossRefADSGoogle Scholar
  16. 16.
    M. Durand, H.A. Stone, Phys. Rev. Lett. 97, 226101 (2006).CrossRefADSGoogle Scholar
  17. 17.
    H.M. Princen, J. Colloid Interface Sci. 91, 160 (1983).CrossRefGoogle Scholar
  18. 18.
    J. Plateau, Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires (Clemm, Paris, 1873).Google Scholar
  19. 19.
    M. Fortes, M. Rosa, J. Colloid Interface Sci. 241, 205 (2001).CrossRefGoogle Scholar
  20. 20.
    J. Rodriguez, B. Saramago, M. Fortes, J. Colloid Interface Sci. 239, 577 (2001).CrossRefGoogle Scholar
  21. 21.
    J.C. Géminard, A. Zywocinski, F. Caillier, P. Oswald, Philos. Mag. Lett. 84, 199 (2004).CrossRefADSGoogle Scholar
  22. 22.
    M. Fortes, P. Teixeira, Philos. Mag. Lett. 85, 21 (2005).CrossRefADSGoogle Scholar
  23. 23.
    M. Fortes, P. Teixeira, Phys. Rev. E 71, 051404 (2005).CrossRefADSGoogle Scholar
  24. 24.
    A. Neimark, M. Vignes-Adler, Phys. Rev. E 51, 788 (1995).CrossRefADSGoogle Scholar
  25. 25.
    G. Han, A. Dussaud, B. Prunet-Foch, A. Neimark, M. Vignes-Adler, J. Non-Equilib. Thermodyn. 25, 325 (2000).MATHCrossRefGoogle Scholar
  26. 26.
    K. Brakke, Exp. Math. 1, 141 (1992).MATHMathSciNetGoogle Scholar
  27. 27.
    S. Cohen-Addad, R. Höhler, Y. Khidas, Phys. Rev. Lett. 93, 028302 (2004).CrossRefADSGoogle Scholar
  28. 28.
    D. Langevin, Adv. Colloid Interface Sci. 88, 209 (2000).CrossRefGoogle Scholar
  29. 29.
    J. Lucassen, Faraday Discuss. Chem. Soc. 59, 76 (1975).CrossRefGoogle Scholar
  30. 30.
    D. Edwards, H. Brenner, D. Wasan, Interfacial Transport Processes and Rheology (Butterworth-Heinemann, 1991).Google Scholar
  31. 31.
    D. Stamenovic, J. Colloid Interface Sci. 145, 255 (1991).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2007

Authors and Affiliations

  1. 1.Laboratoire de Physique StatistiqueCNRS UMR 8550Paris Cedex 05France

Personalised recommendations