Advertisement

The European Physical Journal E

, Volume 24, Issue 1, pp 99–107 | Cite as

Transport and crystallization of colloidal particles in a thin nematic cell

  • M. Škarabot
  • U. Tkalec
  • I. Muševič
Regular Article

Abstract.

In a thin planar nematic cell, the application of an AC electric field induces a macroscopic transport of micrometer-sized colloidal particles along the nematic director. We have analyzed the dependence of particle velocities on the electric-field amplitude and frequency and found that it decreases exponentially with increasing frequency. Using specially designed electrodes we have observed that colloidal particles could be pumped and accelerated across the field-no-field interface, and measured the structural force and the corresponding potential, which is of the order of 10000 kBT for 4μm particles. We demonstrate that spatially periodic close-packed crystalline colloidal structures can be obtained, which are thermodinamically metastable for many days after turning off the electric field and slowly decay into linear chains. Above the nematic-isotropic phase transition, such crystalline structures are non-stable and decay in few minutes.

PACS.

82.70.Dd Colloids 81.16.Dn Self-assembly 83.80.Xz Liquid crystals: nematic, cholesteric, smectic, discotic, etc. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Ramaswamy, R. Nityananda, V.A. Raghunathan, J. Prost, Mol. Cryst. Liq. Cryst. 288, 175 (1996).CrossRefGoogle Scholar
  2. 2.
    R.W. Ruhwandl, E.M. Terentjev, Phys. Rev. E 55, 2958 (1997).CrossRefADSGoogle Scholar
  3. 3.
    P. Poulin, V. Cabuil, D.A. Weitz, Phys. Rev. Lett. 79, 4862 (1997).CrossRefADSGoogle Scholar
  4. 4.
    H. Stark, Phys. Rep. 351, 387 (2001).CrossRefADSGoogle Scholar
  5. 5.
    P. Poulin, H. Stark, T.C. Lubensky, D.A. Weitz, Science 275, 1770 (1997).CrossRefGoogle Scholar
  6. 6.
    P. Poulin, D.A. Weitz, Phys. Rev. E 57, 626 (1998).CrossRefADSGoogle Scholar
  7. 7.
    V.G. Nazarenko, A.B. Nych, B.I. Lev, Phys. Rev. Lett. 87, 075504 (2001).CrossRefADSGoogle Scholar
  8. 8.
    S.P. Meeker, W.C.K. Poon, J. Crain, E.M. Te\-re\-ntjev, Phys. Rev. E 61, R6083 (2000).Google Scholar
  9. 9.
    P.G. Petrov, E.M. Terentjev, Langmuir 17, 2942 (2001).CrossRefGoogle Scholar
  10. 10.
    I. Muševič, M. Škarabot, U. Tkalec, M. Ravnik, S. Žumer, Science 313, 954 (2006).CrossRefADSGoogle Scholar
  11. 11.
    S. Noda, T. Baba (Editors), Roadmap on Photonic Crystals (Kluwer Academic, Dordrecht, Netherlands, 2003).Google Scholar
  12. 12.
    J.L. West, K. Zhang, D. Andrienko, Y. Reznikov, A. Glushchenko, in Photonic Crystal Materials and Devices III, San Jose CA, USA, 24 January 2005, SPIE Proc. 5733, 32 (2005).CrossRefADSGoogle Scholar
  13. 13.
    J.L. West, A. Glushchenko, G. Liao, Y. Reznikov, D. Andrienko, M.P. Allen, Phys. Rev. E 66, 012702 (2002).CrossRefADSGoogle Scholar
  14. 14.
    J.L. West, K. Zhang, A. Glushchenko, D. Andrienko, M. Tasinkevych, Y. Reznikov, Eur. Phys. J. E 20, 237 (2006).CrossRefGoogle Scholar
  15. 15.
    T. Gong, D.W.M. Marr, Langmuir 17, 2301 (2001).CrossRefGoogle Scholar
  16. 16.
    W.D. Ristenpart, I.A. Aksay, D.A. Saville, Phys. Rev. Lett. 90, 128303 (2003).CrossRefADSGoogle Scholar
  17. 17.
    S.O. Lumsdon, E.W. Kaler, O.D. Velev, Langmuir 20, 2108 (2004).CrossRefGoogle Scholar
  18. 18.
    O.D. Velev, K.H. Bhatt, Soft Matter 2, 738 (2006).CrossRefGoogle Scholar
  19. 19.
    M.T. Sullivan, K. Zhao, A.D. Hollingsworth, R.H. Austin, W.B. Russel, P.M. Chaikin, Phy. Rev. Lett. 96, 015701 (2006).CrossRefADSGoogle Scholar
  20. 20.
    Y. Mieda, K. Furutani, Phy. Rev. Lett. 95, 177801 (2005).CrossRefADSGoogle Scholar
  21. 21.
    I. Dierking, G. Biddulph, K. Matthews, Phys. Rev. E 73, 011702 (2006).CrossRefADSGoogle Scholar
  22. 22.
    S.A. Tatarkova, D.R. Burnham, A.V. Kirby, G.D. Love, E.M. Terentjev, Phys. Rev. Lett. 98, 157801 (2007).CrossRefADSGoogle Scholar
  23. 23.
    J.C. Loudet, P. Poulin, Phys. Rev. Lett. 87, 165503 (2001).CrossRefADSGoogle Scholar
  24. 24.
    H. Morgan, N.G. Green, AC Electrokinetics: colloids and nanoparticles (Research Studies Press LtD, Baldock, Hertfordshire, England, 2003).Google Scholar
  25. 25.
    I. Muševič, M. Škarabot, D. Babič, N. Osterman, I. Poberaj, V. Nazarenko, A. Nych, Phys. Rev. Lett. 93, 187801 (2004).CrossRefADSGoogle Scholar
  26. 26.
    P. Poulin, V. Cabuil, D.A. Weitz, Phys. Rev. Lett. 79, 4862 (1997). CrossRefADSGoogle Scholar
  27. 27.
    C.M. Noel, G. Bossis, A.-M. Chaze, F. Giulieri, S. Lacis, Phys. Rev. Lett. 96, 217801 (2006).CrossRefADSGoogle Scholar
  28. 28.
    J.C. Loudet, P. Poulin, Phys. Rev. Lett. 87, 165503 (2001).CrossRefADSGoogle Scholar
  29. 29.
    J.C. Loudet, O. Mondain-Monval, P. Poulin, Eur. Phys. J. E 7, 205 (2002).CrossRefGoogle Scholar
  30. 30.
    J. Israelachvili, Intermolecular and Surface Forces (Academic Press, 1992).Google Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2007

Authors and Affiliations

  • M. Škarabot
    • 1
  • U. Tkalec
    • 1
  • I. Muševič
    • 1
    • 2
  1. 1.J. Stefan InstituteLjubljanaSlovenia
  2. 2.Faculty of Mathematics and PhysicsUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations