Advertisement

The European Physical Journal E

, Volume 23, Issue 2, pp 153–159 | Cite as

Shake-induced order in nanosphere systems

  • F. Járai-Szabó
  • Z. Néda
  • S. Aştilean
  • C. Farcău
  • A. Kuttesch
Article

Abstract.

Self-assembled patterns obtained from a drying nanosphere suspension are investigated by computer simulations and simple experiments. Motivated by the earlier experimental results of Sasaki and Hane and Schöpe, we confirm that more ordered triangular lattice structures can be obtained whenever a moderate intensity random shaking is applied on the drying system. Computer simulations are realized on an improved version of a recently elaborated Burridge-Knopoff–type model. Experiments are made following the setup of Sasaki and Hane, using ultrasonic radiation as source for controlled shaking.

PACS.

81.16.Rf Nanoscale pattern formation 81.07.-b Nanoscale materials and structures: fabrication and characterization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.D. Denkov, O.D. Velev, P.A. Kralchevsky, I.B. Ivanov, H. Yoshimura, K. Nagayama, Langmuir 8, 3183 (1992). CrossRefGoogle Scholar
  2. N.D. Denkov, O.D. Velev, P.A. Kralchevsky, I.B. Ivanov, H. Yoshimura, K. Nagayama, Nature 361, 26 (1993). CrossRefADSGoogle Scholar
  3. Ch.L. Haynes, R.P. van Duyne, J. Phys. Chem. B 105, 5599 (2001). CrossRefGoogle Scholar
  4. K. Kempa et al. , NanoLett. 3, 13 (2003). Google Scholar
  5. W.A. Murray, S. Astilean, W.L. Barnes, Phys. Rev. B 69, 165407 (2004). CrossRefADSGoogle Scholar
  6. A.A. Chabanov, Y. Jun. D.J. Norris, Appl. Phys. Lett. 84, 3573 (2004). CrossRefADSGoogle Scholar
  7. E. Vasco Appl. Phys. Lett. 85, 3714 (2004). Google Scholar
  8. K. Chen, A. Taflove, Y.L. Kim, V. Backman, Appl. Phys. Lett. 86, 033101 (2005). CrossRefGoogle Scholar
  9. M. Sasaki, K. Hane, J. Appl. Phys. 80, 5427 (1996). CrossRefADSGoogle Scholar
  10. H.J. Schope, J. Phys.: Condens. Matter 15, L533 (2003). Google Scholar
  11. M. Baia, L. Baia, S. Astilean, Appl. Phys. Lett. 88, 143121 (2006). CrossRefGoogle Scholar
  12. F. Járai-Szabó, S. Astilean, Z. Néda, Chem. Phys. Lett. 408, 241 (2005). CrossRefADSGoogle Scholar
  13. R. Burridge, L. Knopoff, Bull. Seismol. Soc. Am. 57, 341 (1967). Google Scholar
  14. J.H.E. Cartwright, E. Hernandez-Garcia, O. Piro, Phys. Rev. Lett. 79, 527 (1997). CrossRefADSGoogle Scholar
  15. K.-t. Leung, Z. Néda, Phys. Rev. Lett. 85, 662 (2000). CrossRefADSGoogle Scholar
  16. Z. Néda, K.-t. Leung, L. Józsa, M. Ravasz, Phys. Rev. Lett. 88, 095502 (2002). CrossRefADSGoogle Scholar
  17. D.Y. Chan, J.D. Henry, L.R. White, J. Colloid Interface Sci. 79, 410 (1981). CrossRefGoogle Scholar
  18. P.A. Kralchevsky, V.N. Paunov, N.D. Denkov, I.B. Ivanov, K. Nagayama, J. Colloid Interface Sci. 155, 420 (1993). CrossRefGoogle Scholar
  19. V.N. Paunov, P.A. Kralchevsky, N.D. Denkov, K. Nagayama, K. Nagayama, J. Colloid Interface Sci. 157, 100 (1993). CrossRefGoogle Scholar
  20. C.D. Dushkin, P.A. Kralchevsky, H. Yoshimura, K. Nagayama, Phys. Rev. Lett. 75, 3454 (1995). CrossRefADSGoogle Scholar
  21. C.D. Dushkin, P.A. Kralchevsky, V.N. Paunov, H. Yoshimura, K. Nagayama, Langmuir 12, 641 (1996). CrossRefGoogle Scholar
  22. C.D. Dushkin, H. Yoshimura, K. Nagayama, J. Colloid Interface Sci. 181, 657 (1996). CrossRefGoogle Scholar
  23. K.D. Danov, B. Pouligny, P.A. Kralchevsky, Langmuir 17, 6599 (2001). CrossRefGoogle Scholar
  24. E. Rabani, D.R. Reichman, P.L. Geissler, L.E. Brus, Nature 426, 271 (2003). CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • F. Járai-Szabó
    • 1
  • Z. Néda
    • 1
  • S. Aştilean
    • 1
  • C. Farcău
    • 1
  • A. Kuttesch
    • 1
  1. 1.Department of PhysicsBabeş-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations