Advertisement

The European Physical Journal E

, Volume 21, Issue 3, pp 263–276 | Cite as

Diffusion-induced growth of compositional heterogeneity in polymer blends containing random copolymers

  • Y. V. Kudryavtsev
  • E. N. Govorun
Regular Article

Abstract.

The compositional relaxation in random copolymer systems on a macroscopic scale is considered in theory. A set of diffusion equations is derived that describes the motion of chains of different composition and then converted into coupled equations for statistical moments of the compositional distribution. Several ways to solve the closure problem for these equations are discussed. The simplest is the situation when the shape of the transient compositional distribution can be predicted a priori, for example, a bimodal distribution is kept during interdiffusion of two copolymers that are not very close in composition. For a general case, it is shown that the cumulant-neglect closure based on the truncation of high-order cumulants is an effective method to get an approximate solution in terms of the time-dependent local mean composition and its dispersion. This method is applied to non-homogeneous compatible polymer systems, such as a random copolymer AB of a composition varying in space, a bilayer of Bernoullian copolymers AB of different composition, and a bilayer of homopolymers A and B, in which an autocatalytic polymer-analogous reaction A → B takes place, with possibility of the neighbor group effect. It is found that the interdiffusion can lead to a substantial broadening of the local compositional distribution, which, in turn, accelerates the system dynamics and promotes chemical reactions.

PACS.

47.57.Ng Polymers and polymer solutions 66.30.Ny Chemical interdiffusion; diffusion barriers 82.35.-x Polymers: properties; reactions; polymerization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.S. Montaudo, Polymer 43, 1587 (2002).CrossRefGoogle Scholar
  2. 2.
    J.P. Bouchaud, M.E. Cates, J. Phys. II 3, 1171 (1993).CrossRefGoogle Scholar
  3. 3.
    A.N. Semenov, Phys Rev. E 60, 3076 (1999).CrossRefADSGoogle Scholar
  4. 4.
    E. Pitard, E.I. Shakhnovich, Phys. Rev. E 63, 041501 (2001).CrossRefADSGoogle Scholar
  5. 5.
    Z. Konkoli, J. Hertz, S. Franz, Phys. Rev. E 63, 051910 (2001).CrossRefADSGoogle Scholar
  6. 6.
    A. Corsi, A. Milchev, V.G. Rostiashvili, T.A. Vilgis, Macromolecules 39, 1234 (2006).CrossRefGoogle Scholar
  7. 7.
    Y.V. Kudryavtsev, V.V. Yashin, Bull. Russ. Acad. Sci. Phys. 59, 1414 (1995).MathSciNetGoogle Scholar
  8. 8.
    T. Jian, S.H. Anastasiadis, A.N. Semenov, G. Fytas, K. Adachi, T. Kotaka, Macromolecules 27, 4762 (1994).CrossRefGoogle Scholar
  9. 9.
    T. Jian, S.H. Anastasiadis, A.N. Semenov, G. Fytas, G. Fleischer, A.D. Vilesov, Macromolecules 28, 2439 (1995).CrossRefGoogle Scholar
  10. 10.
    C. Konak, G. Fleischer, Macromolecules 30, 1457 (1997).CrossRefGoogle Scholar
  11. 11.
    E.N. Govorun, Y.V. Kudryavtsev, Polym. Sci., Ser. A 46, 553 (2004).Google Scholar
  12. 12.
    M. Okamoto, T. Kotaka, Polymer 38, 1357 (1997).CrossRefMathSciNetGoogle Scholar
  13. 13.
    H.J. Bang, J.K. Lee, K.H. Lee, J. Polym. Sci., Part B: Polym. Phys. 38, 2625 (2000).CrossRefGoogle Scholar
  14. 14.
    V. Yashin, Y. Kudryavtsev, E. Govorun, A. Litmanovich, Macromol. Theory Simul. 6, 247 (1997).CrossRefGoogle Scholar
  15. 15.
    N.A. Platé, A.D. Litmanovich, O.V. Noah, Macromolecular reactions. Peculiarities, theory and experimental approaches (John Wiley & Sons, Chichester, 1995).Google Scholar
  16. 16.
    Y.V. Kudryavtsev, A.D. Litmanovich, A.G. Makeev, S.V. Bogomolov, Macromol. Theory Simul. 8, 161 (1999).CrossRefGoogle Scholar
  17. 17.
    Y.V. Kudryavtsev, E.N. Govorun, A.D. Litmanovich, Polym. Sci., Ser. A 43, 1085 (2001).Google Scholar
  18. 18.
    L.D. Landau, E.M. Lifshitz, Statistical Physics, Part 1, 3rd ed. (Pergamon Press, Oxford, 1980).Google Scholar
  19. 19.
    J. Stejskal, P. Kratochvil, D. Strakova, O. Prochazka, Macromolecules 19, 1575 (1986).CrossRefGoogle Scholar
  20. 20.
    J.F. Joanny, C.R. Seances, Acad. Sci., Ser. B 286, 89 (1978).Google Scholar
  21. 21.
    G.H. Fredrickson, S.W. Sides, Macromolecules 36, 5415 (2003).CrossRefGoogle Scholar
  22. 22.
    T.E. Schichtel, K. Binder, Macromolecules 20, 1671 (1987).CrossRefGoogle Scholar
  23. 23.
    M. Takenaka, B. Chu, Macromolecules 28, 3240 (1995).CrossRefGoogle Scholar
  24. 24.
    A.N. Semenov, I.Ya. Erukhimovich, Polym. Sci. USSR 28, 2153 (1986).Google Scholar
  25. 25.
    M. Takenaka, T. Hashimoto, Phys. Rev. E 48, R647 (1993).Google Scholar
  26. 26.
    C. Huang, M. Olvera de la Cruz, Macromolecules 27, 4231 (1994).CrossRefGoogle Scholar
  27. 27.
    N. Clarke, Eur. Phys. J. E 4, 327 (2001).CrossRefGoogle Scholar
  28. 28.
    G.A. Buxton, N. Clarke, Macromolecules 38, 8929 (2005).CrossRefGoogle Scholar
  29. 29.
    P. Sollich, J. Phys.: Condens. Matter 14, R79 (2002).Google Scholar
  30. 30.
    P. Sollich, M.E. Cates, Phys. Rev. Lett. 80, 1365 (1998).CrossRefADSGoogle Scholar
  31. 31.
    P.B. Warren, Phys. Rev. Lett. 80, 1369 (1998).CrossRefMathSciNetADSGoogle Scholar
  32. 32.
    P.B. Warren, Phys. Chem. Chem. Phys. 1, 2197 (1999).CrossRefGoogle Scholar
  33. 33.
    I. Pagonabarraga, M. Cates, Macromolecules 36, 934 (2003).CrossRefGoogle Scholar
  34. 34.
    V.V. Yashin, A.C. Balazs, J. Chem. Phys. 121, 2833 (2004).CrossRefADSGoogle Scholar
  35. 35.
    A. Van Heukelum, G.T. Barkema, M.W. Edelman, E. van der Linden, E.H.A. de Hoog, R.H. Tromp, Macromolecules 36, 6662 (2003).CrossRefGoogle Scholar
  36. 36.
    A.Z. Akcasu, Macromol. Theory Simul. 6, 679 (1997).CrossRefGoogle Scholar
  37. 37.
    I.Ya. Erukhimovich, Y.V. Kudryavtsev, Macromol. Theory Simul. 8, 247 (1999). CrossRefGoogle Scholar
  38. 38.
    M.L. Dashevskii, Prob. Contr. Inf. Theory 4, 317 (1975).Google Scholar
  39. 39.
    W.F. Wu, Y.K. Lin, Int. J. Non-Linear Mech. 19, 349 (1984).Google Scholar
  40. 40.
    S. Seeger, K.H. Hoffmann, Continuum Mech. Thermodyn. 12, 403 (2000).CrossRefMathSciNetADSGoogle Scholar
  41. 41.
    J.D. Murray, Lectures on Nonlinear-Differential-Equation Models in Biology (Clarendon Press, Oxford, 1977).Google Scholar
  42. 42.
    M. Xanthos (Editor), Reactive Extrusion (Hanser Publishers, Munich, 1992).Google Scholar
  43. 43.
    A.D. Litmanovich, N.A. Platé, Y.K. Kudryavtsev, Prog. Polym. Sci. 27, 915 (2002).CrossRefGoogle Scholar
  44. 44.
    F. Brochard, F. Jouffroy, P. Levinson, Macromolecules 17, 2925 (1984).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2007

Authors and Affiliations

  1. 1.Topchiev Institute of Petrochemical Synthesis of RASMoscowRussia
  2. 2.Physics DepartmentMoscow State UniversityMoscowRussia

Personalised recommendations