The European Physical Journal E

, Volume 21, Issue 3, pp 243–261 | Cite as

Chain orientation in natural rubber, Part II: 2H-NMR study

  • J. Rault
  • J. Marchal
  • P. Judeinstein
  • P. A. Albouy
Regular Article

Abstract.

Stress-induced crystallisation (SIC) and stress-induced melting (SIM) in natural rubbers (NR), unfilled and filled with carbon black (CB) have been studied by 2H-NMR measurements. Various materials have been swollen with small amount (< 2%) of deuterated alkane chains. The orientation of the amorphous chains, then the local deformation of the amorphous chains during deformation cycles and during stress relaxation, permits to clarify the SIC and SIM processes during hardening and recovery. By mechanical, WAXS and NMR measurements one determines the same critical draw ratio for appearance λA and disappearance λE of the crystallites. It is demonstrated that the hysteresis observed by the different techniques (stress σ, crystallinity χ, NMR splitting Δν) are due to the supercooling effect ( λA > λE, at constant temperature). During hardening at constant strain rate it is found that the local draw ratio remains constant and equal to λA, whereas the crystallinity increases linearly with the macroscopic draw ratio λ. The hardening σ ∼ (λ - λA)2 is then interpreted as a reinforcement effect due to the crystallites, which act as new crosslinks. This confirms the prediction of Flory. In filled rubber the same effects are observed, and the stress amplification factor is determined as a function of the CB content. It is found that the fillers act as nucleation centres for the NR crystallites. The reinforcement of such materials is due principally to this nucleation effect and to the presence of a super network formed by both the NR crystallites and the CB fillers.

PACS.

62.20.Fe Deformation and plasticity (including yield, ductility, and superplasticity) 61.41.+e Polymers, elastomers, and plastics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.E. Mark, B. Erman, Rubber Elasticity a Molecular Primer (Wiley Interscience N.Y., 1988).Google Scholar
  2. 2.
    J.E. Mark, B. Erman, F.R. Eirich, Science and Technology of Rubber, second edition (Academic Press, San Diego, 1994).Google Scholar
  3. 3.
    A.N. Gent, L.Q. Zhang, J. Polym. Sci. Polym. Phys. 39, 811 (2001).CrossRefGoogle Scholar
  4. 4.
    D.J. Lee, J.A. Donovan, Rubber Chem. Technol. 60, 15 (1987).Google Scholar
  5. 5.
    S. Trabelsi, P.A. Albouy, J. Rault, Macromolecules 35, 10054 (2002).CrossRefGoogle Scholar
  6. 6.
    S. Trabelsi, P.A. Albouy, J. Rault, Rubber Chem. Technol. 77, 303 (2004).Google Scholar
  7. 7.
    A.N. Gent, S. Kawahara, J. Zhao, Rubber Chem. Technol. 71, 668 (1997).Google Scholar
  8. 8.
    G.D. Goritz, F.H. Muller, W. Sietz, Colloid Polym. Sci. 62, 114 (1977).CrossRefGoogle Scholar
  9. 9.
    W.F Reichert, M.K. Hopfenmuller, D. Goritz, J. Mater. Sci. 22, 3470 (1987).CrossRefGoogle Scholar
  10. 10.
    S. Trabelsi, P.A. Albouy, J. Rault, Macromolecules 36, 7624 (2003).CrossRefGoogle Scholar
  11. 11.
    S. Trabelsi, P.A. Albouy, J. Rault, Macromolecules 36, 9093 (2003).CrossRefGoogle Scholar
  12. 12.
    P.A. Albouy, J. Marchal, J. Rault, Eur. Phys. J. E 17, 247 (2005).CrossRefGoogle Scholar
  13. 13.
    P.J. Flory, J. Chem. Phys. 15, 397 (1947).CrossRefADSGoogle Scholar
  14. 14.
    P.J. Flory, Principle of Polymer Chemistry (Cornell University Press, 1953).Google Scholar
  15. 15.
    R. Gaylord, J. Polym. Sci., Polym. Lett. Ed. 13, 337 (1975)CrossRefGoogle Scholar
  16. 16.
    K. Smith, J. Polym. Eng. Sci. 16, 168 (1976).CrossRefGoogle Scholar
  17. 17.
    H.G. Kim, L. Mandelkern, J. Polym. Sci. Part A-2, 6, 181 (1968).Google Scholar
  18. 18.
    S. Trabelsi, PhD Thesis, Paris 11 University, France (2002).Google Scholar
  19. 19.
    J. Rault, J. Marchal, P. Judeinstein, P.A. Albouy, Macromolecules 39, 8356 (2006).CrossRefGoogle Scholar
  20. 20.
    G.R. Mitchell, Polymer 25, 1562 (1984).CrossRefGoogle Scholar
  21. 21.
    Y. Miyamoto, H. Yamao, K. Sekimoto, Macromolecules 36, 646 (2003).CrossRefGoogle Scholar
  22. 22.
    S. Toki, T. Fujimaki, M. Okuyama, Polymer 41, 5423 (2000).CrossRefGoogle Scholar
  23. 23.
    S. Toki, I. Sics, S. Ran, L. Liu, B.S. Hsiao, S. Murakami, K. Senoo, S. Kohjiya, Macromolecules 35, 6578 (2002).CrossRefGoogle Scholar
  24. 24.
    S. Toki, I. Sics, S. Ran, L. Liu, B.S. Hsiao, S. Murakami, M. Tosaka, S. Kohjiya, S. Poompradub, Y. Ikeda, A.H. Tsou, Rubber Chem. Technol. 77, 317 (2004).Google Scholar
  25. 25.
    L.R.G. Treloar, The Physics of Rubber Elasticity (Oxford University Press, Oxford, 1975).Google Scholar
  26. 26.
    A.N. Gent, Trans. Faraday Soc. 50, 521 (1954).CrossRefGoogle Scholar
  27. 27.
    A. Postuma de Boer, A.J. Pennings, Faraday Discuss. Chem. Soc. 68, 345 (1979).CrossRefGoogle Scholar
  28. 28.
    J. Bransrup, E.H. Immergut, Polymer Handbook (Wiley Interscience, New York, 1966).Google Scholar
  29. 29.
    G. Kraus, Reinforcement of Elastomers (Interscience Pub., New York, London, Sydney, 1965) p. 64.Google Scholar
  30. 30.
    M. Dannenberg, J. Brennan, Rubber. Chem. Technol. 39, 597 (1966).Google Scholar
  31. 31.
    B. Chapelier, B. Deloche, R. Oeser, J. Phys. II 3, 1619 (1993).CrossRefGoogle Scholar
  32. 32.
    W. Gronski, R. Sadler, M.M. Jacobi, Macromolecules 17, 741 (1984).CrossRefGoogle Scholar
  33. 33.
    P. Sotta, B. Deloche, B. Herz, J. Lapp, D. Durand, J.C. Rabadeux, Macromolecules 20, 2769 (1987).CrossRefGoogle Scholar
  34. 34.
    G. Simon, Polym. Bull. 25, 365 (1991).CrossRefGoogle Scholar
  35. 35.
    G. Simon, H. Schneider, Makromol. Chem. Makromol. Symp. 52, 233 (1991).Google Scholar
  36. 36.
    A. Dubault, B. Deloche, J. Herz, Colloid Polym. Sci. 75, 45 (1987).Google Scholar
  37. 37.
    M.G. Brereton, Macromolecules 26, 1152 (1993).CrossRefGoogle Scholar
  38. 38.
    K.M. McLoughlin, J.K. Waldbieser, C. Cohen, T.M. Duncan, Macromolecules 30, 1044 (1997).CrossRefGoogle Scholar
  39. 39.
    M.G. Brereton, M.E. Ries, Macromolecules 29, 2644 (1996).CrossRefGoogle Scholar
  40. 40.
    P. Ekanayake, H. Menge, H. Schneider, M.E. Ries, M.G. Brereton, P.G. Klein, Macromolecules 33, 1807 (2000).CrossRefGoogle Scholar
  41. 41.
    H. Menge, S. Hotopf, H. Schneider, Polymer 41, 4189 (2000).CrossRefGoogle Scholar
  42. 42.
    P. Ekanayake, PhD Thesis, Halle University, Germany (2000).Google Scholar
  43. 43.
    B. Deloche, P. Sotta, in Spectroscopy of Rubbers and Rubbery Materials, edited by V.M. Litvinov, P.P. De (Rapra Technology ltd, UK, 2002).Google Scholar
  44. 44.
    M. Botev, P. Judeinstein, R. Neffati, J. Rault, Macromolecules 29, 8538 (1996).CrossRefGoogle Scholar
  45. 45.
    M. Botev, R. Neffati, J. Rault, Polymer 40, 5227 (1999).CrossRefGoogle Scholar
  46. 46.
    B. Janik, E.T. Samulski, H. Torumi, J. Phys. Chem. 91, 1842 (1987).CrossRefGoogle Scholar
  47. 47.
    D.J. Photinos, E.T. Samulski, H. Toriumi, J. Phys. Chem. 94, 4688 (1990).CrossRefGoogle Scholar
  48. 48.
    D.J. Photinos, E.T. Samulski, H. Toriumi, J. Phys. Chem. 94, 4694 (1990).CrossRefGoogle Scholar
  49. 49.
    D.J. Photinos, C.D. Poon, E.T. Samulski, H. Torumi, J. Phys. Chem. 96, 8176 (1992).CrossRefGoogle Scholar
  50. 50.
    H.G. Elias, Macromolecules. Structure and Properties (Plenum Press, New York, 1977).Google Scholar
  51. 51.
    J. Rault, J. Non-Newtonian Fluid Mech. 23, 229 (1987).CrossRefGoogle Scholar
  52. 52.
    J. Rault, C. Mace, P. Judeinstein, J. Courtieu, J. Macromol. Sci. Phys. B 35, 115 (1996).Google Scholar
  53. 53.
    S. Westermann, M. Kreitschmann, W. Pyckhout-Hinter, D. Richter, E. Straube, Physica B 234-236, 306 (1997).Google Scholar
  54. 54.
    V.M. Litvinov, H.W. Spiess, Makromol. Chem. 193, 1181 (1992).CrossRefGoogle Scholar
  55. 55.
    V.M. Litvinov, P.A.M. Steeman, Macromolecules 32, 8476 (1999). CrossRefGoogle Scholar
  56. 56.
    C.D. Poon, E.T. Samulski, J. Non-Cryst. Solids 131, 509 (1991).CrossRefADSGoogle Scholar
  57. 57.
    K. Baumann, W. Gronski, Prog. Colloid Polym. Sci. 90, 97 (1992).Google Scholar
  58. 58.
    H. Luo, M. Kluppel, H. Schneider, Macromolecules 37, 8000 (2004).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2007

Authors and Affiliations

  • J. Rault
    • 1
  • J. Marchal
    • 1
  • P. Judeinstein
    • 2
  • P. A. Albouy
    • 1
  1. 1.Physique des solides, Bât. 510Université Paris SudOrsayFrance
  2. 2.ICMMO, Bât. 410Université Paris SudOrsayFrance

Personalised recommendations