The European Physical Journal E

, Volume 20, Issue 4, pp 401–408 | Cite as

Size and stability of liposomes: A possible role of hydration and osmotic forces

  • J. Sabın
  • G. Prieto
  • J. M. Ruso
  • R. Hidalgo-Álvarez
  • F. Sarmiento
Regular Article

Abstract.

Dynamic light scattering and electrophoretic mobility measurements have been used to characterize the size, size distribution and zeta potentials (ζ-potentials) of egg yolk phosphatidylcholine (EYPC) liposomes in the presence of monovalent ions ( Na+ and K+). To study the stability of liposomes the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory has been extended by introducing the hydrated radius of the adsorbed ions onto the liposome surfaces. The decrease of liposome size is explained on the basis of the membrane impermeability to some ions which generate osmotic forces, which leads to evacuate water from liposome inside.

PACS.

87.16.Dg Membranes, bilayers, and vesicles 87.68.+z Biomaterials and biological interfaces 89.75.-k Complex systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.R.C. New, Liposomes: A Practical Approach (IRL Press, Oxford, 1990).Google Scholar
  2. 2.
    D.D. Lasic, Liposomes. From Physics to Applications (Elsevier, Amsterdam, 1993).Google Scholar
  3. 3.
    G. Gregoriadis, Liposomes as Drug Carriers (Wiley, New York, 1987).Google Scholar
  4. 4.
    J.P. Devissaguet, F. Puisieux, Les Liposomes: Aspects Technologiques, Biologiques et Pharmacologiques (Les Editions Inserm, Paris, 1993).Google Scholar
  5. 5.
    C. Alving, R. Richards, Liposomes, edited by M. Ostro (Marcel Dekker, New York, 1983).Google Scholar
  6. 6.
    C. Nicolau, Les Liposomes: Applications Thérapeutiques, edited by F. Puisieux, J. Delattre (Tec and Doc Lavoisier, Paris, 1985).Google Scholar
  7. 7.
    B.V. Derjaguin, L.D. Landau, Acta Physicochim. URRS 14, 633 (1941).Google Scholar
  8. 8.
    E.J.B. Verwey, J.Th.G. Overbeck, Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948).Google Scholar
  9. 9.
    R. Dorshow, J. Briggs, C.A. Bunton, D.F. Nicolit, J. Phys. Chem. 86, 2388 (1982).CrossRefGoogle Scholar
  10. 10.
    J.M. Ruso, D. Attwood, C. Rey, P. Taboada, V. Mosquera, F. Sarmiento, J. Phys. Chem. B 103, 7092 (1999).CrossRefGoogle Scholar
  11. 11.
    J.M. Ruso, D. Attwood, P. Taboada, V. Mosquera, F. Sarmiento, Langmuir 16, 1620 (2000).CrossRefGoogle Scholar
  12. 12.
    P. Taboada, D. Attwood, J.M. Ruso, M. García, F. Sarmiento, V. Mosquera, Langmuir 16, 3175 (2000).CrossRefGoogle Scholar
  13. 13.
    J.M. Ruso, J.L. López-Fontán, G. Prieto, F. Sarmiento, J. Chem. Phys. 118, 5964 (2003).CrossRefADSGoogle Scholar
  14. 14.
    S. Croll, Prog. Org. Coat. 44, 131 (2002).CrossRefGoogle Scholar
  15. 15.
    S.H. Behrens, M. Borkovec, P. Schurtenberger, Langmuir 14, 1951 (1998).CrossRefGoogle Scholar
  16. 16.
    H. Huang, M. Manciu, E. Ruckenstein, Langmuir 21, 94 (2005).CrossRefGoogle Scholar
  17. 17.
    G. Pollicanel, D. Costa, C. Caccamo, J. Phys.: Condens. Matter 15, 375 (2003).CrossRefADSGoogle Scholar
  18. 18.
    F. Bordi, C. Cametti, Colloids Surf. B 26, 341 (2002).CrossRefGoogle Scholar
  19. 19.
    K. Nakamori, T. Nakajima, M. Odawara, I. Koyama, M. Nemoto, T. Yoshida, H. Ohshima, K. Inoue, Chem. Pharm. Bull. (Tokyo) 41, 1279 (1993).Google Scholar
  20. 20.
    J. Sabín, G. Prieto, P.V. Messina, J.M. Ruso, R. Hidalgo-Álvarez, F. Sarmiento, Langmuir 21, 10968 (2005).CrossRefGoogle Scholar
  21. 21.
    J.A. Molina-Bolívar, F. Galisteo-González, R. Hidalgo-Álvarez, Colloids Surf. B 14, 3 (1999).CrossRefGoogle Scholar
  22. 22.
    J.N. Israelachvili, R.M. Pashley, J. Colloid Interface Sci. 98, 500 (1984).CrossRefGoogle Scholar
  23. 23.
    S. Marcelja, N. Radic, Chem. Phys. Lett. 42, 129 (1976).CrossRefADSGoogle Scholar
  24. 24.
    B. Jönsson, H. Wennerström, J. Chem. Soc., Faraday Trans. 2, 79, 19 (1983).Google Scholar
  25. 25.
    P. Attard, G.N. Patey, Phys. Rev. A 43, 2953 (1991).CrossRefADSGoogle Scholar
  26. 26.
    V.N. Paunov, E.W. Kaler, S.I. Sandler, D.N. Petsev, J. Colloid Interface Sci. 240, 640 (2001).CrossRefGoogle Scholar
  27. 27.
    M. Manciu, E. Ruckenstein, Langmuir 17, 7061 (2001).CrossRefGoogle Scholar
  28. 28.
    M. Manciu, E. Ruckenstein, Langmuir 17, 7582 (2001).CrossRefGoogle Scholar
  29. 29.
    E. Ruckenstein, M. Manciu, Langmuir 18, 7584 (2002).CrossRefGoogle Scholar
  30. 30.
    H. Huang, M. Manciu, E. Ruckenstein, J. Colloid Interface Sci. 263, 156 (2003).CrossRefGoogle Scholar
  31. 31.
    P. Attard, M.T. Batchelor, Chem. Phys. Lett. 149, 206 (1988).CrossRefADSGoogle Scholar
  32. 32.
    N.A.M. Basseling, Langmuir 13, 2113 (1997).CrossRefGoogle Scholar
  33. 33.
    J. Sabin, J.M. Ruso, A. González-Pérez, G. Prieto, F. Sarmiento, Colloids Surf. A 47, 64 (2006).CrossRefGoogle Scholar
  34. 34.
    J.R. Hunter, Zeta Potential in Colloid Science (Academic Press, London, 1981).Google Scholar
  35. 35.
    H.C. Hamaker, Recl. Trav. Chim. 56, 727 (1937).Google Scholar
  36. 36.
    R. Tadmor, J. Phys. Matter 13, 195 (2001).CrossRefADSGoogle Scholar
  37. 37.
    H.C. Hamaker, Recl. Trav. Chim. 55, 1015 (1936).Google Scholar
  38. 38.
    H.C. Hamaker, Recl. Trav. Chim. 56, 3 (1937).Google Scholar
  39. 39.
    E. Matijevic, K.G. Mathai, R.H. Ottewil, M. Kerker, J. Phys. Chem. 65, 826 (1961).Google Scholar
  40. 40.
    B. Vincent, H. Bijsterbosch, J. Lyklema, J. Colloid Interface Sci. 37, 171 (1970).CrossRefGoogle Scholar
  41. 41.
    D. Bastos, F.J. de las Nieves, Colloid Polym. Sci. 272, 592 (1994).CrossRefGoogle Scholar
  42. 42.
    S. McLaughlin, Annu. Rev. Biophys. Biophys. Chem. 18, 113 (1989).CrossRefGoogle Scholar
  43. 43.
    D. Murray, A. Arbuzova, G. Hangyás-Mihályné, A. Gambhir, N. Ben-Tal, B. Honig, S. McLaughlin, Biophys. Chem. 77, 3176 (1999). Google Scholar
  44. 44.
    F.J. Carrion, A.D. Maza, J.L. Parra, J. Colloid Interface Sci. 164, 78 (1994).CrossRefGoogle Scholar
  45. 45.
    A. McLaughlin, W.K. Eng, G. Vaio, T. Wilson, S. McLaughlin, J. Membr. Biol. 76, 183 (1983).CrossRefGoogle Scholar
  46. 46.
    D-Z. Liu, W-Y. Chen, L-M. Tasi, S-P. Yang, Colloids Surf. A 172, 57 (2000).CrossRefGoogle Scholar
  47. 47.
    S. Nir, J. Bentz, J. Colloid Interface Sci. 65, 399 (1978).CrossRefGoogle Scholar
  48. 48.
    H. Ohshima, Y. Inoko, T. Mitsu, J. Colloid Interface Sci. 86, 57 (1982).CrossRefGoogle Scholar
  49. 49.
    E. Evans, M. Metcalfe, Biophys. J. 46, 423 (1984).Google Scholar
  50. 50.
    K. Ahmed, M.N. Jones, J. Lipid Res. 13, 187 (2003).CrossRefGoogle Scholar
  51. 51.
    J.N. Israelachvili, Intermolecular and Surface Forces (Academic Press, New York, 1991).Google Scholar
  52. 52.
    F. Bordi, C. Cametti, M. Diociaiuti, D. Gaudino, S. Sennato, Langmuir 20, 5214 (2004).CrossRefGoogle Scholar
  53. 53.
    M.M.A.E. Claessens, B.F. van Oort, F.A.M. Leermakers, F.A. Hoekstra, M.A. Cohen Stuart, Biophys. J. 87, 3882 (2004).CrossRefGoogle Scholar
  54. 54.
    J. Pencer, G. White, F.R. Hallet, Biophys. J. 81, 2716 (2001).Google Scholar
  55. 55.
    G. White, J. Pencer, B.G. Nickel, J.M. Wood, R.F. Hallet, Biophys. J. 71, 2701 (1996).CrossRefGoogle Scholar
  56. 56.
    G. Cevc, Biochim. Biophys. Acta 1031, 311 (1990).Google Scholar
  57. 57.
    A.D. Petelska, Z.A. Figaszewski, Biophys. J. 78, 812 (2000).Google Scholar
  58. 58.
    A.D. Petelska, M. Naumowicz, Z.A. Figaszewski, Cell. Mol. Biol. Lett. Suppl. 7, 212 (2002).Google Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  • J. Sabın
    • 1
  • G. Prieto
    • 1
  • J. M. Ruso
    • 1
  • R. Hidalgo-Álvarez
    • 2
  • F. Sarmiento
    • 1
  1. 1.Biophysics and Interfaces Group, Department of Applied PhysicsUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Biocolloid and Fluid Physics Group, Department of Applied Physics, Faculty of SciencesUniversity of GranadaGranadaSpain

Personalised recommendations