Advertisement

The European Physical Journal E

, Volume 20, Issue 3, pp 335–346 | Cite as

Undulated cylinders of charged diblock copolymers

  • G. M. GrasonEmail author
  • C. D. Santangelo
Regular Article

Abstract.

We study the cylinder to sphere morphological transition of diblock copolymers in aqueous solution with a hydrophobic block and a charged block. We find a metastable undulated cylinder configuration for a range of charge and salt concentrations which, nevertheless, occurs above the threshold where spheres are thermodynamically favorable. By modeling the shape of the cylinder ends, we find that the free-energy barrier for the transition from cylinders to spheres is quite large and that this barrier falls significantly in the limit of high polymer charge and low solution salinity. This suggests that observed undulated cylinder phases are kinetically trapped structures.

PACS.

82.35.Jk Copolymers, phase transitions, structure 64.70.Nd Structural transitions in nanoscale materials 82.70.Uv Surfactants, micellar solutions, vesicles, lamellae, amphiphilic systems, (hydrophilic and hydrophobic interactions) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.S. Bates, Science 251, 898 (1991).ADSGoogle Scholar
  2. 2.
    F.S. Bates, G.H. Fredrickson, Annu. Rev. Phys. Chem. 41, 525 (1990).CrossRefGoogle Scholar
  3. 3.
    G.H. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers (Oxford University Press, Oxford, 2006).Google Scholar
  4. 4.
    M.W. Matsen, M. Schick, Phys. Rev. Lett. 72, 2660 (1994).CrossRefADSGoogle Scholar
  5. 5.
    A.N. Semenov, Sov. Phys. JETP 61, 733 (1985).Google Scholar
  6. 6.
    G.M. Grason, B.A. DiDonna, R.D. Kamien, Phys. Rev. Lett. 91, 058304 (2003)CrossRefADSGoogle Scholar
  7. 7.
    J.N. Israelachvili, Intermolecular and Surface Forces (Academic Press, London, 1992).Google Scholar
  8. 8.
    S. Jain, F.S. Bates, Science 300, 460 (2003).CrossRefADSGoogle Scholar
  9. 9.
    S. Jain, F.S. Bates, Macromolecules 37, 1511 (2004).CrossRefGoogle Scholar
  10. 10.
    L. Zhang, K. Yu, A. Eisenberg, Science 272, 1777 (1996).ADSGoogle Scholar
  11. 11.
    D.E. Discher, A. Eisenberg, Science 297, 697 (2002).CrossRefGoogle Scholar
  12. 12.
    Y. Geng, F. Ahmed, N. Bhasin, D.E. Disher, J. Phys. Chem. B 109, 3772 (2005).CrossRefGoogle Scholar
  13. 13.
    D. Bendejacq, M. Joanicot, V. Ponsinet, Eur. Phys. J. E 17, 83 (2005).CrossRefGoogle Scholar
  14. 14.
    S.E. Burke, A. Eisenberg, Langmuir 17, 6705 (2001).CrossRefGoogle Scholar
  15. 15.
    P.D. Olmsted, S.T. Milner, Phys. Rev. Lett. 72, 936 (1994)CrossRefADSGoogle Scholar
  16. 16.
    E.B. Zhulina, O.V. Borisov, Macromolecules 29, 2618 (1996)CrossRefGoogle Scholar
  17. 17.
    R.R. Netz, Europhys. Lett. 47, 391 (1999).CrossRefADSGoogle Scholar
  18. 18.
    A. Jusufi, C.N. Likos, H. Löwen, J. Chem. Phys. 116, 11011 (2002).CrossRefADSGoogle Scholar
  19. 19.
    K. Kenmotsu, Surfaces with Constant Mean Curvature (American Mathematical Society, Providence, 2003).Google Scholar
  20. 20.
    I.M. Mladenov, Eur. Phys. J. B 29, 327 (2002).CrossRefADSGoogle Scholar
  21. 21.
    P. Pincus, Macromolecules 24, 2912 (1991).CrossRefGoogle Scholar
  22. 22.
    S. Alexander, J. Phys. (Paris) 38, 983 (1997)Google Scholar
  23. 23.
    A.V. Korobko, W. Jesse, S.U. Egelhaaf, A. Lapp, J.R.C. van der Maarel, Phys. Rev. Lett. 93, 177801 (2004).CrossRefADSGoogle Scholar
  24. 24.
    O.V. Borisov, E.B. Zhulina, Macromolecules 36, 10029 (2003).CrossRefGoogle Scholar
  25. 25.
    T. Tlusty, S.A. Safran, R. Strey, Phys. Rev. Lett. 84, 1244 (2000)CrossRefADSGoogle Scholar
  26. 26.
    A. Halperin, S. Alexander, Macromolecules 22, 2403 (1989).CrossRefGoogle Scholar
  27. 27.
    E.E. Dormidontova, Macromolecules 32, 7630 (1999).CrossRefGoogle Scholar
  28. 28.
    F.J. Esselink, E.E. Dormidontova, G. Hadziiannou, Macromolecules 31, 4873 (1998).CrossRefGoogle Scholar
  29. 29.
    R. Lund, L. Willner, J. Stellbrink, P. Lindner, D. Richter, Phys. Rev. Lett. 96, 068302 (2006).CrossRefADSGoogle Scholar
  30. 30.
    E.A.G. Aniansson, S.N. Wall, J. Phys. Chem. 78, 1024 (1974).CrossRefGoogle Scholar
  31. 31.
    E.A.G. Aniansson, S.N. Wall, J. Phys. Chem. 79, 857 (1975).CrossRefGoogle Scholar
  32. 32.
    M.W. Matsen, J. Chem. Phys. 114, 8165 (2001).CrossRefADSGoogle Scholar
  33. 33.
    H.A. Kramers, Physica 7, 284 (1940).zbMATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    E.L. Thomas, D.M. Anderson, C.S. Henkee, D. Hoffman, Nature 334, 598 (1988).CrossRefADSGoogle Scholar
  35. 35.
    M.W. Matsen, F.S. Bates, Macromolecules 29, 7641 (1996).CrossRefGoogle Scholar
  36. 36.
    H. Junnai, Y. Nishikawa, R.J. Spontak, S.D. Smith, D.A. Agard, T. Hashimoto, Phys. Rev. Lett. 84, 518 (2000).CrossRefADSGoogle Scholar
  37. 37.
    T.T. Nguyen, A. Gopal, K.Y.C. Lee, T.A. Witten, Phys. Rev. E 72, 051930 (2005).CrossRefADSGoogle Scholar
  38. 38.
    E.g., S.A. Safran, Statistical Thermodynamics of Surfaces, Interfaces, and Membranes (Addison-Wesley, Reading, MA, 1994).Google Scholar
  39. 39.
    J.B. Fournier, P. Galatola, Europhys. Lett. 39, 225 (1997).CrossRefADSGoogle Scholar
  40. 40.
    I. Tsafrir, D. Sagi, T. Arzi, M.-A. Guedeau-Boudeville, V. Frette, D. Kandel, J. Stavens, Phys. Rev. Lett. 86, 1138 (2001).CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Physics and AstronomyUniversity of CaliforniaLos AngelesUSA

Personalised recommendations