Advertisement

External field-induced switching in nematic elastomers: A Monte Carlo study

  • G. Skačej
  • C. Zannoni
Regular Article

Abstract.

We present a Monte Carlo study of external field-induced switching in nematic elastomers, employing a coarse-grained shearable lattice model. In large enough systems a full-wavelength Fréedericksz effect is observed --as opposed to the half-wavelength effect seen in ordinary nematics-- that clearly reflects in simulated polarized light textures, as well as in deuterium magnetic resonance spectra. The reorientation of mesogenic units is accompanied by pronounced shear deformations.

PACS.

61.30.Vx Polymer liquid crystals 61.30.Cz Molecular and microscopic models and theories of liquid crystal structure 61.41.+e Polymers, elastomers, and plastics 

References

  1. 1.
    M. Warner, E.M. Terentjev, Liquid Crystal Elastomers (Oxford University Press, Oxford, 2003).Google Scholar
  2. 2.
    L. Golubović, T.C. Lubensky, Phys. Rev. Lett. 63, 1082 (1989).CrossRefADSGoogle Scholar
  3. 3.
    P.D. Olmsted, J. Phys. II 4, 2215 (1994).CrossRefGoogle Scholar
  4. 4.
    C.-C. Chang, L.-C. Chien, R.B. Meyer, Phys. Rev. E 56, 595 (1997).CrossRefADSGoogle Scholar
  5. 5.
    E.M. Terentjev, M. Warner, R.B. Meyer, J. Yamamoto, Phys. Rev. E 60, 1872 (1999). CrossRefADSGoogle Scholar
  6. 6.
    P. Pasini, G. Skačej, C. Zannoni, Chem. Phys. Lett. 413, 463 (2005).CrossRefADSGoogle Scholar
  7. 7.
    P.A. Lebwohl, G. Lasher, Phys. Rev. A 6, 426 (1972).CrossRefADSGoogle Scholar
  8. 8.
    P.D. Olmsted, S.M. Milner, Macromolecules 27, 6648 (1994).CrossRefADSGoogle Scholar
  9. 9.
    P.G. de Gennes, C. R. Acad. Sci. Paris 281, 101 (1975).Google Scholar
  10. 10.
    N. Uchida, A. Onuki, Europhys. Lett. 45, 341 (1999).CrossRefADSGoogle Scholar
  11. 11.
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953).CrossRefADSGoogle Scholar
  12. 12.
    J.A. Barker, R.O. Watts, Chem. Phys. Lett. 3, 144 (1969).CrossRefADSGoogle Scholar
  13. 13.
    U. Fabbri, C. Zannoni, Mol. Phys. 58, 763 (1986).CrossRefADSGoogle Scholar
  14. 14.
    J. Küpfer, H. Finkelmann, Macromol. Chem. Rapid Commun. 12, 717 (1991).CrossRefGoogle Scholar
  15. 15.
    W. Kaufhold, H. Finkelmann, H.R. Brand, Makromol. Chem. 192, 2555 (1991).CrossRefGoogle Scholar
  16. 16.
    P.J. Collings, J.S. Patel, Handbook of Liquid Crystal Research (Oxford University Press, New York, 1997).Google Scholar
  17. 17.
    I. Kundler, H. Finkelmann, Macromol. Chem. Rapid Commun. 16, 697 (1995).CrossRefGoogle Scholar
  18. 18.
    S. Disch, C. Schmidt, H. Finkelmann, Macromol. Rapid Commun. 15, 303 (1994).CrossRefGoogle Scholar
  19. 19.
    A. Lebar, Z. Kutnjak, S. Žumer, H. Finkelmann, A. Sánchez-Ferrer, B. Zalar, Phys. Rev. Lett. 94, 197801 (2005).CrossRefADSGoogle Scholar
  20. 20.
    A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961).Google Scholar
  21. 21.
    C. Chiccoli, P. Pasini, G. Skačej, S. Žumer, C. Zannoni, Phys. Rev. E 60, 4219 (1999).CrossRefADSGoogle Scholar
  22. 22.
    P. Martinoty, P. Stein, H. Finkelmann, H. Pleiner, H.R. Brand, Eur. Phys. J. E 14, 311 (2004).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  • G. Skačej
    • 1
    • 2
  • C. Zannoni
    • 1
  1. 1.Dipartimento di Chimica Fisica ed Inorganica and INSTMUniversità di BolognaBolognaItaly
  2. 2.Oddelek za fizikoUniverza v LjubljaniLjubljanaSlovenia

Personalised recommendations