Energetics of 2D colloids in free-standing smectic-C films
- 75 Downloads
- 11 Citations
Abstract.
The formation of regular colloid patterns in free-standing smectic films at the transition from the smectic-C to the isotropic or nematic phase is well known experimentally. The self-organization of isotropic or nematic droplets is caused by their mutual interaction, mediated by elastic distortions of the local director in the surrounding liquid crystal. These distortions are related to the anchoring conditions of the director at the droplet border. We describe analytically the energetics of the liquid crystal environment of a single droplet in one-constant approximation. A method of complex analysis, Conformal Mapping, is employed. Following a suggestion of Dolganov et al. (Phys. Rev. E. 73, 041706 (2006)), energetics of chain and grid patterns built from the colloids are investigated numerically in order to explain experimentally observed formations and their director fields.
PACS.
61.30.Dk Continuum models and theories of liquid crystal structure 61.30.Jf Defects in liquid crystals 61.30.Hn Surface phenomena: alignment, anchoring, anchoring transitions, surface-induced layering, surface-induced ordering, wetting, prewetting transitions, and wetting transitionsPreview
Unable to display preview. Download preview PDF.
References
- 1.P.S. Drzaic, Liquid Crystal Dispersions, Vol. 1 (World Scientific, Singapore, 1995).Google Scholar
- 2.P. Poulin, H. Stark, T.C. Lubensky, D.A. Weitz, Science 275, 1770 (1997).CrossRefGoogle Scholar
- 3.P. Poulin, D.A. Weitz, Phys. Rev. E 57, 626 (1998).CrossRefADSGoogle Scholar
- 4.H. Stark, Phys. Rep. 351, 387 (2001) and references therein.CrossRefADSGoogle Scholar
- 5.P.V. Dolganov, V.K. Dolganov, Phys. Rev. E 73, 041706 (2006).CrossRefADSGoogle Scholar
- 6.P. Cluzeau, P. Poulin, G. Joly, H.T. Nguyen, Phys. Rev. E 63, 031702 (2001).CrossRefADSGoogle Scholar
- 7.H. Schüring, R. Stannarius, Langmuir 18, 9735 (2002).CrossRefGoogle Scholar
- 8.P. Cluzeau, V. Bonnand, G. Joly, V. Dolganov, H.T. Nguyen, Eur. Phys. J. E 10, 231 (2003).CrossRefGoogle Scholar
- 9.C. Völtz, R. Stannarius, Phys. Rev. E 70, 061702 (2004).CrossRefADSGoogle Scholar
- 10.R. Stannarius, C. Völtz, Phys. Rev. E 72, 032701 (2005)MathSciNetCrossRefADSGoogle Scholar
- 11.P. Cluzeau, G. Joly, H.T. Nguyen, V.K. Dolganov, JETP Lett. 75, 482 (2002)CrossRefADSGoogle Scholar
- 12.D. Pettey, T.C. Lubensky, D. Link, Liq. Cryst. 25, 579 (1998).CrossRefGoogle Scholar
- 13.P. Patricio, M. Tasinkevych, M.M. Telo da Gama, Eur. Phys. J. 7, 117 (2002).Google Scholar
- 14.T.C. Lubensky, D. Pettey, N. Currier, H. Stark, Phys. Rev. E 57, 610 (1998).CrossRefADSGoogle Scholar
- 15.B.I. Lev, S.B. Chernyshuk, P.M. Tomchuk, H. Yokoyama, Phys. Rev. E 65, 021709 (2002).CrossRefADSGoogle Scholar
- 16.J. Fukuda, H. Stark, M. Yoneya, H. Yokoyama, Phys. Rev. E 69, 041706 (2004). CrossRefADSGoogle Scholar
- 17.J. Fukuda, H. Yokoyama, Eur. Phys. J. E 4, 389 (2001).CrossRefGoogle Scholar
- 18.M. Tasinkevych, N.M. Silvestre, P. Patricio, M.M. Telo da Gama, Eur. Phys. J. E 9, 341 (2002).CrossRefGoogle Scholar
- 19.P.V. Dolganov, E.I. Demikhov, V.K. Dolganov, B.M. Bolotin, K. Krohn, Eur. Phys. J. E 12, 593 (2003).CrossRefGoogle Scholar
- 20.P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1993).Google Scholar
- 21.R. Yamamoto, Phys. Rev. Lett. 87, 075502 (2001).CrossRefADSGoogle Scholar
- 22.R. Yamamoto, Y. Nakayama, K. Kim, J. Phys.: Condens. Matter 16, 1945 (2004).CrossRefGoogle Scholar
- 23.S.A. Langer, J.P. Sethna, Phys. Rev. A 34, 5035 (1986).CrossRefADSGoogle Scholar
- 24.I. Kraus, R.B. Meyer, Phys. Rev. Lett. 82, 3815 (1999).MathSciNetCrossRefADSGoogle Scholar
- 25.R. Courant, D. Hilbert, Methoden der Mathematischen Physik (Springer, Berlin, 1937).Google Scholar
- 26.A. Rapini, M. Papoular, J. Phys. (Paris), Colloq. C4 30, 54 (1969).Google Scholar
- 27.A. Sonnet, A. Kilian, S. Hess, Phys. Rev. E 52, 718 (1995).CrossRefADSGoogle Scholar
- 28.M.R. Spiegel, Komplexe Variablen (McGraw-Hill Book Company, London, 1997).Google Scholar
- 29.W.H. Westphal, Physik (Springer, Berlin, 1937).Google Scholar
- 30.C. Bohley, unpublished results.Google Scholar
- 31.C. Pozrikidis, Theoretical and Computational Fluid Dynamics (Oxford University Press, New York, 1997).Google Scholar
- 32.L. Lejček, Czech. J. Phys. 55, 1237 (2005).CrossRefADSGoogle Scholar
- 33.P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 1997).Google Scholar
- 34.R.B. Meyer, Mol. Cryst. Liq. Cryst. 40, 355 (1972).Google Scholar
- 35.S. Chandrasekhar, Liquid Crystals, 2nd ed. (Cambridge University Press, Cambridge, 1992).Google Scholar
- 36.P.V. Dolganov, P.M. Bolotin, JETP Lett. 77, 429 (2003).CrossRefADSGoogle Scholar