The European Physical Journal E

, Volume 20, Issue 1, pp 109–117 | Cite as

Surface-functionalized nanoparticles with liquid-like behavior: The role of the constituent components

  • A. B. Bourlinos
  • E. P. Giannelis
  • Q. Zhang
  • L. A. Archer
  • G. Floudas
  • G. Fytas
Regular Article

Abstract.

Ionically modified silica nanoparticles with large counter anions (sulfonate, isostearate) at two silica volume fractions (13 and 27%) form a viscous fluid and a glass but not crystalline solids. Dielectric spectroscopy, Brillouin scattering and shear rheometry were employed to investigate these new nanoparticle-based fluids. The glass transition temperature and hence the local dynamics are governed by the large counter anions, whereas the flow properties can be controlled by the spatial correlation between the nanoparticles, e.g. by tuning the volume fraction of hard cores and local interactions between segments in the soft corona. Liquid-like ordering of the cores was revealed by X-ray scattering and found to influence significantly the macroscopic flow properties of these salts.

PACS.

89.75.-k Complex systems 83.10.Tv Structural and phase changes 62.25.+g Mechanical properties of nanoscale materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.B. Bourlinos, R.A. Herrera, N. Chalkias, D.D. Jiang, Q. Zhang, L.A. Archer, E.P. Giannelis, Adv. Mater. 17, 234 (2005).CrossRefGoogle Scholar
  2. 2.
    A.B. Bourlinos, S. Ray Chowdhury, R. Herrera, D.D. Jiang, Q. Zhang, L.A. Archer, E.P. Giannelis, Adv. Funct. Mater. 15, 1285 (2005).CrossRefGoogle Scholar
  3. 3.
    B. Smarsly, H. Kaper, Angew. Chem., Int. Ed. 44, 3809 (2005). Google Scholar
  4. 4.
    J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Appl. Phys. Lett. 78, 718 (2001).CrossRefADSGoogle Scholar
  5. 5.
    S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke, Appl. Phys. Lett. 79, 2252 (2001).CrossRefADSGoogle Scholar
  6. 6.
    S.P. Jang, S.U.S. Choi, Appl. Phys. Lett. 84, 4316 (2004).CrossRefADSGoogle Scholar
  7. 7.
    R. Prasher, Phys. Rev. Lett. 94, 025901 (2005).CrossRefADSGoogle Scholar
  8. 8.
    X. Wang, X. Xu, S.U.S. Choi, J. Thermophys. Heat Transf. 13, 474 (1999).CrossRefGoogle Scholar
  9. 9.
    O.M. Wilson, X. Hu, D.G. Cahill, P.V. Braun, Phys. Rev. B. 66, 224301 (2002).CrossRefADSGoogle Scholar
  10. 10.
    S. Huxtable, D.G. Cahill, S. Shenogin, L. Xue, R. Ozisik, P. Barone, M. Usrey, M.S. Strano, G. Siddons, M. Shim, P. Keblinski, Nature Mater. 2, 731 (2003).CrossRefADSGoogle Scholar
  11. 11.
    D.T. Wasan, A.D. Nikolov, Nature 423, 156 (2003).CrossRefADSGoogle Scholar
  12. 12.
    Z.S. Hu, J.X. Dong, Wear 216, 92 (1998).CrossRefGoogle Scholar
  13. 13.
    M. Antonietti, D. Kuang, B. Smarsly, Y. Zhou, Angew. Chem., Int. Ed. 43, 4988 (2004).Google Scholar
  14. 14.
    T. Fukushima, A. Kosaka, Y. Ishimura, T. Yamamoto, T. Takigawa, N. Ishii, T. Aida, Science 300, 2072 (2003).CrossRefADSGoogle Scholar
  15. 15.
    X. Mu, J. Meng, Z.-C. Li, Y. Kou, J. Am. Chem. Soc. 127, 9694 (2005).CrossRefGoogle Scholar
  16. 16.
    B.P. Binks, A.K. Dyab, P.D. Fletcher, Chem. Commun. 20, 2540 (2003).CrossRefGoogle Scholar
  17. 17.
    Q. Zhang, L.A. Archer, Macromolecules 37, 1928 (2004).CrossRefGoogle Scholar
  18. 18.
    B.-H. Hang, M.A. Winnik, A.B. Bourlinos, E.P. Giannelis, Chem. Mater. 17, 4001 (2005).CrossRefGoogle Scholar
  19. 19.
    R.S. Penciu, H. Kriegs, G. Petekidis, G. Fytas, E.N. Economou, J. Chem. Phys. 118, 5224 (2003)CrossRefADSGoogle Scholar
  20. 20.
    A. Schoenhals, F. Kremer, in Broadband Dielectric Spectroscopy, edited by F. Kremer, A. Schoenhals (Springer, Berlin, 2002).Google Scholar
  21. 21.
    N.G. McCrum, B.E. Read, G. Williams, in Anelastic and Dielectric Effects in Polymeric Solids (Dover, New York, 1991).Google Scholar
  22. 22.
    W.H. Stockmayer, Pure Appl. Chem. 15, 539 (1967).CrossRefGoogle Scholar
  23. 23.
    S. Havriliak, S. Negami, Polymer 8, 161 (1967).CrossRefGoogle Scholar
  24. 24.
    J.D. Ferry, Viscoelastic Properties of Polymers, 3rd edition (Wiley, New York, 1980).Google Scholar
  25. 25.
    G. Floudas, G. Fytas, S. Pispas, N. Hadjichristidis, T. Pakula, A.R. Khokhlov, Macromolecules 28, 5109 (1995).CrossRefGoogle Scholar
  26. 26.
    J. Wang, W.H. Meyer, G. Wegner, Acta Polymer 46, 233 (1995).CrossRefGoogle Scholar
  27. 27.
    M. Mierzwa, G. Floudas, M. Neidhoefer, R. Graf, H.W. Spiess, W.H. Meyer, G. Wegner, J. Chem. Phys. 117, 6289 (2002).CrossRefADSGoogle Scholar
  28. 28.
    A. Guinier, in X-ray Diffraction (W.H. Freeman and Company, Paris, 1963).Google Scholar
  29. 29.
    D.J. Kinning, E.L. Thomas, Macromolecules 17, 1712 (1984).CrossRefGoogle Scholar
  30. 30.
    L.J. Fetters, D.J. Lohse, D. Richter, T.A. Witten, A. Zirkel, Macromolecules 27, 4639 (1994).CrossRefGoogle Scholar
  31. 31.
    T. Pakula, D. Vlassopoulos, G. Fytas, J. Roovers, Macromolecules 31, 8931 (1998).CrossRefGoogle Scholar
  32. 32.
    C.N. Likos, H. Lowen, M. Watzlawek, B. Abbas, O. Jucknischke, J. Allgaier, D. Richter, Phys. Rev. Lett. 80, 4450 (1998).CrossRefADSGoogle Scholar
  33. 33.
    B. Loppinet, G. Fytas, D. Vlassopoulos, C.N. Likos, G. Meier, G.J. Liu, Macromol. Chem. Phys. 206, 163 (2005).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  • A. B. Bourlinos
    • 1
  • E. P. Giannelis
    • 1
  • Q. Zhang
    • 2
  • L. A. Archer
    • 2
  • G. Floudas
    • 3
    • 4
  • G. Fytas
    • 5
    • 6
  1. 1.Department of Materials Science and EngineeringCornell UniversityIthacaUSA
  2. 2.School of Chemical and Biomolecular EngineeringCornell UniversityIthacaUSA
  3. 3.Department of PhysicsUniversity of IoanninaGreece
  4. 4.Biomedical Research Institute (BRI)-FORTHIoanninaGreece
  5. 5.Department of Materials ScienceFORTH-IESLHeraklion, CreteGreece
  6. 6.Max Planck Institute for Polymer ResearchMainzGermany

Personalised recommendations