Advertisement

The European Physical Journal E

, Volume 19, Issue 4, pp 461–469 | Cite as

Smoothening transition of a two-dimensional pressurized polymer ring

  • E. Haleva
  • H. DiamantEmail author
Regular Article

Abstract.

We revisit the problem of a two-dimensional polymer ring subject to an inflating pressure differential. The ring is modeled as a freely jointed closed chain of N monomers. Using a Flory argument, mean-field calculation and Monte Carlo simulations, we show that at a critical pressure, p cN -1, the ring undergoes a second-order phase transition from a crumpled, random-walk state, where its mean area scales as 〈A〉 ∼ N, to a smooth state with 〈A〉 ∼ N 2. The transition belongs to the mean-field universality class. At the critical point a new state of polymer statistics is found, in which 〈A〉 ∼ N 3/2. For pp c we use a transfer-matrix calculation to derive exact expressions for the properties of the smooth state.

PACS.

36.20.Ey Macromolecules and polymer molecules: Conformation (statistics and dynamics) 05.40.Fb Random walks and Levy flights 64.60.-i General studies of phase transitions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.G. Brereton, C. Butler, J. Phys. A 20, 3955 (1987).CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    D.C. Khandekar, F.W. Wiegel, J. Phys. A 21, L563 (1988)Google Scholar
  3. 3.
    B. Duplantier, J. Phys. A 22, 3033 (1989).CrossRefADSzbMATHMathSciNetGoogle Scholar
  4. 4.
    B. Duplantier, Phys. Rev. Lett. 64, 493 (1990).CrossRefADSGoogle Scholar
  5. 5.
    J. Cardy, Phys. Rev. Lett. 72, 1580 (1994).CrossRefADSzbMATHMathSciNetGoogle Scholar
  6. 6.
    S. Leibler, R.R.P. Singh, M.E. Fisher, Phys. Rev. Lett. 59, 1989 (1987).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    A.C. Maggs, S. Leibler, M.E. Fisher, C.J. Camacho, Phys. Rev. A 42, 691 (1990).CrossRefADSGoogle Scholar
  8. 8.
    C.J. Camacho, M.E. Fisher, Phys. Rev. Lett. 65, 9 (1990).CrossRefADSGoogle Scholar
  9. 9.
    J. Rudnick, G. Gaspari, Science 252, 422 (1991).ADSGoogle Scholar
  10. 10.
    G. Gaspari, J. Rudnick, A. Beldjenna, J. Phys. A 26, 1 (1993).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    E. Levinson, Phys. Rev. A 45, 3629 (1992).CrossRefADSGoogle Scholar
  12. 12.
    U.M.B. Marconi, A. Maritan, Phys. Rev. E 47, 3795 (1993).CrossRefADSGoogle Scholar
  13. 13.
    G. Gaspari, J. Rudnick, M. Fauver, J. Phys. A 26, 15 (1993).CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    A. Dua, T.A. Vilgis, Phys. Rev. E 71, 21801 (2005).CrossRefADSGoogle Scholar
  15. 15.
    Y. Kantor, D.R. Nelson, Phys. Rev. Lett. 58, 1774 (1987)CrossRefADSGoogle Scholar
  16. 16.
    E. Guiter, F. David, S. Leibler, L. Peliti, Phys. Rev. Lett. 61, 2949 (1988).CrossRefADSGoogle Scholar
  17. 17.
    M. Rubinstein, R.H. Colby, Polymer Physics (Oxford University Press, Oxford, 2003).Google Scholar
  18. 18.
    R.A. Harris, J.E. Hearst, J. Chem. Phys. 44, 2595 (1966)CrossRefGoogle Scholar
  19. 19.
    B.Y. Ha, D. Thirumalai, J. Chem. Phys. 103, 9408 (1995)CrossRefADSGoogle Scholar
  20. 20.
    H. Diamant, D. Andelman, Phys. Rev. E 61, 6740 (2000).CrossRefADSGoogle Scholar
  21. 21.
    R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).Google Scholar
  22. 22.
    K. Binder, Topics in Current Physics, Monte Carlo Methods in Statistical Physics (Springer-Verlag, Berlin, 1979).Google Scholar
  23. 23.
    P. Pincus, Macromolecules 9, 386 (1976).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  1. 1.School of Chemistry, Raymond & Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTel AvivIsrael

Personalised recommendations