The European Physical Journal E

, Volume 20, Issue 3, pp 257–266 | Cite as

Splay-bend textures involving tetrahedratic order

  • H. Pleiner
  • P. E. CladisEmail author
  • H. R. Brand
Regular Article


We show that defect-free splay-bend textures are less energetic compared to uniform states in liquid-crystalline phases that possess both quadrupolar (nematic) and octupolar (tetrahedratic) order. This is because, in such systems, there is a symmetry-allowed linear gradient term in the energy. Another unusual feature of these splay-bend textures is the fact that they have a non-homogeneous, space-dependent free-energy density. These results may help clarify some mysterious features noted for the B7 liquid-crystal phase formed by achiral banana-shaped molecules.


61.30.Gd Orientational order of liquid crystals; electric and magnetic field effects on order 61.30.Dk Continuum models and theories of liquid crystal structure 05.70.Ln Nonequilibrium and irreversible thermodynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.G. Fel, Phys. Rev. E 52, 702 (1995).CrossRefADSGoogle Scholar
  2. 2.
    L. Radzihovsky, T.C. Lubensky, Europhys. Lett. 54, 206 (2001).CrossRefADSGoogle Scholar
  3. 3.
    Throughout the present manuscript we focus on the non-chiral tetrahedratic phase, $T_d$ fel. We note, however, that our analysis is also useful for the blue phase version of its chiral analogue, the $T$ phase fel.Google Scholar
  4. 4.
    H.R. Brand, P.E. Cladis, H. Pleiner, Macromolecules 25, 7223 (1992).CrossRefGoogle Scholar
  5. 5.
    P.E. Cladis, H.R. Brand, Liq. Cryst. 14, 1327 (1993).Google Scholar
  6. 6.
    T. Niori, T. Sekine, J. Watanabe, T. Furukawa, H. Takezoe, J. Mater. Chem. 6, 1231 (1996).CrossRefGoogle Scholar
  7. 7.
    T. Sekine, T. Niori, J. Watanabe, T. Furukawa, S.W. Choi, H. Takezoe, J. Mater. Chem. 7, 1307 (1997).CrossRefGoogle Scholar
  8. 8.
    D.R. Link, G. Natale, R. Shao, J.E. Mclennan, N.A. Clark, E. Körblova, D.M. Walba, Science 278, 1924 (1997).CrossRefADSGoogle Scholar
  9. 9.
    H.R. Brand, P.E. Cladis, H. Pleiner, Eur. Phys. J. B 6, 347 (1998).CrossRefADSGoogle Scholar
  10. 10.
    R. Macdonald, F. Kentischer, P. Warnick, G. Heppke, Phys. Rev. Lett. 81, 4408 (1998).CrossRefADSGoogle Scholar
  11. 11.
    D. Shen, S. Diele, I. Wirth, C. Tschierske, Chem. Commun. issue 23, 2573 (1998).CrossRefGoogle Scholar
  12. 12.
    G. Pelzl, S. Diele, W. Weissflog, Adv. Mater. 11, 707 (1999).CrossRefGoogle Scholar
  13. 13.
    P.E. Cladis, H.R. Brand, H. Pleiner, Liq. Cryst. Today 9, 1 (1999).Google Scholar
  14. 14.
    H.R. Brand, P.E. Cladis, H. Pleiner Int. J. Eng. Sci. 38, 1099 (2000).CrossRefGoogle Scholar
  15. 15.
    P.E. Cladis, H. Pleiner, H.R. Brand, Ferroelectrics 243, 221 (2000).Google Scholar
  16. 16.
    H. Pleiner, H.R. Brand, P.E. Cladis, Ferroelectrics 243, 291 (2000).Google Scholar
  17. 17.
    G. Pelzl, S. Diele, S. Grande, A. Jakli, Ch. Lischka, H. Kresse, H. Schmalfuss, I. Wirth, W. Weissflog, Liq. Cryst. 26, 401 (1999).CrossRefGoogle Scholar
  18. 18.
    P.G. de Gennes, Mol. Cryst. Liq. Cryst. 12, 191 (1971).Google Scholar
  19. 19.
    T.C. Lubensky, L. Radzihovsky, Phys. Rev. E 66, 031704 (2002).MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    P.E. Cladis, Tetrahedratic order in biological systems, invited Symposium M5b Tetrahedratic (Octupolar) Order in Complex Materials, American Physical Society, Los Angeles, CA, March 22, 2005, Bull. Am. Phys. Soc., available on-line.Google Scholar
  21. 21.
    H.R. Brand, H. Pleiner, P.E. Cladis, Physica A 351, 189 (2005).CrossRefADSGoogle Scholar
  22. 22.
    H.R. Brand, H. Pleiner, P.E. Cladis, Eur. Phys. J. E 7, 163 (2002).CrossRefGoogle Scholar
  23. 23.
    P.E. Cladis, W. Weissflog, G. Pelzl, H.R. Brand, unpublished.Google Scholar
  24. 24.
    Y. Yusuf, Y. Hidaka, S. Kai, H.R. Brand, P.E. Cladis, W. Weissflog, G. Pelzl, Ferroelectrics 276, 171 (2002).CrossRefGoogle Scholar
  25. 25.
    P.E. Cladis, H. Pleiner, H.R. Brand, Eur. Phys. J. E 11, 283 (2003).CrossRefGoogle Scholar
  26. 26.
    W. Weissflog, M.W. Schröder, S. Diele, G. Pelzl, Adv. Mater. 15, 630 (2003).CrossRefGoogle Scholar
  27. 27.
    G. Pelzl, A. Eremin, S. Diele, H. Kresse, W. Weissflog, J. Mater. Chem. 12, 2591 (2002).CrossRefGoogle Scholar
  28. 28.
    T. Niori, J. Yamamoto, H. Yokoyama, Mol. Cryst. Liq. Cryst. 409, 475 (2004).CrossRefGoogle Scholar
  29. 29.
    M. Hird, Y. Raoul, J.W. Goodby, H.F. Gleeson, Ferroelectrics 309, 95 (2004).CrossRefGoogle Scholar
  30. 30.
    H.R. Brand, P.E. Cladis, H. Pleiner, Ferroelectrics 315, 165 (2005).CrossRefGoogle Scholar
  31. 31.
    H. Pleiner, H.R. Brand, Europhys. Lett. 9, 243 (1989).ADSGoogle Scholar
  32. 32.
    D.A. Coleman, Science 301, 1204 (2003).CrossRefADSGoogle Scholar
  33. 33.
    F. Grandjean, Bull. Soc. Mineral. 42, 42 (1919). See also P.E. Cladis, A.E. White, J. Appl. Phys. 47, 1256 (1976).Google Scholar
  34. 34.
    G. Toulouse, J. Phys. Lett. 38, L-67 (1977)Google Scholar
  35. 35.
    L.A. Madsen, T.J. Dingemans, M. Nakata, E.T. Samulski, Phys. Rev. Lett. 92, 145505 (2004).CrossRefADSGoogle Scholar
  36. 36.
    B. Acharya, A. Primak, S. Kumar, Phys. Rev. Lett. 92, 145505 (2004).CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  1. 1.Max-Planck-Institute for Polymer ResearchMainzGermany
  2. 2.Advanced Liquid Crystal TechnologiesSummitUSA
  3. 3.Theoretische Physik IIIUniversität BayreuthBayreuthGermany

Personalised recommendations