Advertisement

The European Physical Journal E

, Volume 19, Issue 4, pp 385–388 | Cite as

Main-chain smectic liquid-crystalline polymers as randomly disordered systems

  • A. S. Muresan
  • B. I. Ostrovskii
  • A. Sánchez-Ferrer
  • H. Finkelmann
  • W. H. de JeuEmail author
Rapid Note

Abstract.

We report a high-resolution X-ray lineshape study of main-chain smectic polymers. The results indicate that the layer ordering differs fundamentally from the algebraic decay typical for other smectic liquid-crystalline systems. The lineshapes are best described by broad squared Lorentzians indicating some form of short-range correlations. However, several higher harmonics are observed, which excludes simple liquid-like short-range order. This behaviour is tentatively attributed to a random field of defects associated with entangled hairpins in the main-chain polymer structure.

PACS.

61.30.-v Liquid crystals 64.60.Cn Order-disorder transformations; statistical mechanics of model systems 61.10.Eq X-ray scattering (including small-angle scattering) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Blatter, M.V. Feigel'man, V.B Geshkenbain, A.I. Larkin, V.M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).CrossRefADSGoogle Scholar
  2. 2.
    P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, New York, 1995).Google Scholar
  3. 3.
    R.J. Birgeneau, J. Magn. & Magn. Mater. 177-181, 1 (1998).Google Scholar
  4. 4.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon Press, Oxford, 1993).Google Scholar
  5. 5.
    V.P. Shibaev, L. Lam (Editors), Liquid Crystalline and Mesomorphic Polymers (Springer, New York, 1994).Google Scholar
  6. 6.
    T. Bellini, R. Radzihovsky, J. Toner, N.A. Clark, Science 294, 1074 (2001).CrossRefADSGoogle Scholar
  7. 7.
    M. Warner, E.M. Terentjev, Liquid Crystal Elastomers (Clarendon Press, Oxford, 2003).Google Scholar
  8. 8.
    D.M. Lambreva, B.I. Ostrovskii, H. Finkelmann, W.H. de Jeu, Phys. Rev. Lett. 93, 185702 (2004).CrossRefADSGoogle Scholar
  9. 9.
    H. Wemter, H. Finkelmann, E-polymers 013 (2001).Google Scholar
  10. 10.
    Y. Yusuf, J.H. Huh, P.E. Cladis, H.R. Brand, H. Finkelmann, S. Kai, Phys. Rev. E 71, 061702 (2005).CrossRefADSGoogle Scholar
  11. 11.
    H. Finkelmann, S.T. Kim, A. Munoz, P. Palffy-Muhoray, B. Taheri, Adv. Mater. 13, 1069 (2001).CrossRefGoogle Scholar
  12. 12.
    J. Schmidtke, S. Kniesel, H. Finkelmann, Macromolecules 38, 1357 (2005).CrossRefGoogle Scholar
  13. 13.
    L.D. Landau, Phys. Z. Sowjetunion 11, 545 (1937).zbMATHGoogle Scholar
  14. 14.
    R.E. Peierls, Helv. Phys. Acta, Suppl. II, 7, 81 (1934).Google Scholar
  15. 15.
    J. Als-Nielsen, Phys. Rev. B 22, 312 (1980).CrossRefADSGoogle Scholar
  16. 16.
    E. Nachaliel, E.N. Keller, D. Davidov, C. Boeffel, Phys. Rev. A 43, 2897 (1991).CrossRefADSGoogle Scholar
  17. 17.
    E.M. Terentjev, M. Warner, T.C. Lubensky, Europhys. Lett. 30, 343 (1995)Google Scholar
  18. 18.
    G. Wong, W.H. de Jeu, H. Shao, K. Liang, R. Zentel, Nature 389, 576 (1997).CrossRefADSGoogle Scholar
  19. 19.
    P.D. Olmsted, E.M. Terentjev, Phys. Rev. E 53, 2444 (1996)CrossRefADSGoogle Scholar
  20. 20.
    V.M. Kaganer, B.I. Ostrovskii, W.H. de Jeu, Phys. Rev. A 44, 8258 (1991).CrossRefGoogle Scholar
  21. 21.
    M.H. Li, A. Brlet, J.P. Cotton, P. Davidson, C. Strazielle, P.J. Keller, J. Phys. II 4, 1843 (1994).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  • A. S. Muresan
    • 1
  • B. I. Ostrovskii
    • 1
    • 2
  • A. Sánchez-Ferrer
    • 3
  • H. Finkelmann
    • 3
  • W. H. de Jeu
    • 1
    Email author
  1. 1.FOM Institute for Atomic and Molecular PhysicsAmsterdamThe Netherlands
  2. 2.Institute of CrystallographyAcademy of Sciences of RussiaMoscowRussia
  3. 3.Institut für Makromolekulare ChemieUniverstät FreiburgFreiburgGermany

Personalised recommendations