The European Physical Journal E

, Volume 19, Issue 4, pp 477–487 | Cite as

DNA electrophoresis in designed channels

  • T. SakaueEmail author
Regular Article


We present a simple description on the electrophoretic dynamics of polyelectrolytes going through designed channels with narrow constrictions of slit geometry. By analyzing rheological behaviours of the stuck chain, which is coupled to the effect of solvent flow, three critical electric fields (permeation field E (per)N -1, deformation field E (def)N -3/5 and injection field E (inj)N 0, with N polymerization index) are clarified. Between E (per) and E (inj), the chain migration is dictated by the driven activation process. In particular, at E > E (def), the stuck chain at the slit entrance is strongly deformed, which enhances the rate of the permeation. From these observations, electrophoretic mobility at a given electric field is deduced, which shows non-monotonic dependence on N. For long enough chains, mobility increases with N, in good agreement with experiments. An abrupt change in the electrophoretic flow at a threshold electric field is formally regarded as a nonequilibrium phase transition.


83.50.-v Deformation and flow 36.20.Ey Conformation (statistics and dynamics) 87.14.Gg DNA, RNA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J-L. Viovy, Rev. Mod. Phys. 72, 813 (2000).CrossRefADSGoogle Scholar
  2. 2.
    T.A.J. Duke, A.N. Semenov, J-L. Viovy, Phys. Rev. Lett. 69, 3260 (1992).CrossRefADSGoogle Scholar
  3. 3.
    W.D. Volkmuth, T. Duke, M.C. Wu, R.H. Austin, Phys. Rev. Lett. 72, 2117 (1994).CrossRefADSGoogle Scholar
  4. 4.
    L. Liu, P. Li, S.A. Asher, Nature 397, 141 (1999).CrossRefADSGoogle Scholar
  5. 5.
    J. Han, S.W. Turner, H.G. Craighead, Phys. Rev. Lett. 83, 1688 (1999).CrossRefADSGoogle Scholar
  6. 6.
    J. Han, H.G. Craighead, Science 288, 1026 (2000).CrossRefADSGoogle Scholar
  7. 7.
    E. Arvanitidou, D. Hoagland, Phys. Rev. Lett. 67, 1464 (1991).CrossRefADSGoogle Scholar
  8. 8.
    J. Rousseau, G. Drouin, G.W. Slater, Phys. Rev. Lett. 79, 1945 (1997).CrossRefADSGoogle Scholar
  9. 9.
    A. Baumgartner, M. Muthukumar, J. Chem. Phys. 87, 3082 (1987).CrossRefADSGoogle Scholar
  10. 10.
    G.W. Slater, S.Y. Wu, Phys. Rev. Lett. 75, 164 (1995).CrossRefADSGoogle Scholar
  11. 11.
    P. Pincus, Macromolecules 9, 386 (1976).CrossRefGoogle Scholar
  12. 12.
    F. Brochard-Wyart, Europhys. Lett. 30, 387 (1995).ADSGoogle Scholar
  13. 13.
    F. Tessier, J. Labrie, G.W. Slater, Macromolecules 35, 4791 (2002).CrossRefGoogle Scholar
  14. 14.
    Z. Chen, F.A. Escobedo, Mol. Simul. 29, 417 (2003).CrossRefGoogle Scholar
  15. 15.
    M. Streek, F. Schmid, T.T. Duong, A. Ros, J. Biotechnol. 112, 79 (2004).CrossRefGoogle Scholar
  16. 16.
    M. Streek, F. Schmid, T.T. Duong, D.A. Anselmetti, A. Ros, Phys. Rev. E 71, 011905 (2005).CrossRefADSGoogle Scholar
  17. 17.
    D. Long, J.-L. Viovy, A. Ajdari, Phys. Rev. Lett. 76, 3858 (1996).CrossRefADSGoogle Scholar
  18. 18.
    P. Andre, D. Long, A. Ajdari, Eur. Phys. J. B 4, 307 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    T. Sakaue, E. Raphaël, Macromolecules 39, 2621 (2006).CrossRefGoogle Scholar
  20. 20.
    M. Daoud, P.-G. de Gennes, J. Phys. (Paris) 38, 85 (1977).Google Scholar
  21. 21.
    P.-G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979).Google Scholar
  22. 22.
    P.-G. de Gennes, Adv. Polym. Sci. 138, 92 (1999).Google Scholar
  23. 23.
    T. Sakaue, E. Raphaël, P.-G. de Gennes, F. Brochard-Wyart, Eur. Phys. Lett. 72, 83 (2005).CrossRefADSGoogle Scholar
  24. 24.
    G.W. Gardiner, Handbook of Stochastic Methods, 2nd edition (Springer-Verlag, Berlin, 1996).Google Scholar
  25. 25.
    F. Brochard, P.-G. de Gennes, J. Chem. Phys. 67, 52 (1977)CrossRefADSGoogle Scholar
  26. 26.
    S. Daoudi, F. Brochard, Macromolecules 11, 751 (1978).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  1. 1.Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan

Personalised recommendations