Advertisement

The European Physical Journal E

, Volume 19, Issue 3, pp 303–310 | Cite as

Physics of RNA and viral assembly

  • R. F. BruinsmaEmail author
Focus Point

Abstract.

The overview discusses the application of physical arguments to structure and function of single-stranded viral RNA genomes.

PACS.

87.15.Nn Properties of solutions; aggregation and crystallization of macromolecules 61.50.Ah Theory of crystal structure, crystal symmetry; calculations and modeling 81.16.Dn Self-assembly 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.S. Baker, N.H. Olson, S.D. Fuller, Microbiol. Mol. Biol. Rev. 63, 862 (1999).Google Scholar
  2. 2.
    R.G. Webster, A. Granoff, Encyclopedia of Virology Plus CD-ROM (Academic Press, 1995).Google Scholar
  3. 3.
    C.K. Biebricher, M. Eigen, J. McCaskill, J. Mol. Biol. 231, 175 (1993).CrossRefGoogle Scholar
  4. 4.
    P.P. Hung, C.M. Ling, L.R. Overby, Science 166, 1638 (1969).ADSGoogle Scholar
  5. 5.
    J. Johnson, R. Rueckert, in Structural Biology of Viruses, edited by Wah Chiu, Roger M. Burnett, Robert L. Garcea (Oxford University Press, New York, 1997).Google Scholar
  6. 6.
    Not only do small RNA viruses have nucleotide densities that are comparable to that of crystalline RNA, but there are examples where the nucleotide density even exceeds that of crystalline RNA, such as the Rhinovirus which has a packing density of 1.69 cubic angstrom per dalton.Google Scholar
  7. 7.
    H. Tsuruta, V.S. Reddy, W.R. Wikoff, J.E. Johnson, J. Mol. Biol. 284, 1439 (1998).CrossRefGoogle Scholar
  8. 8.
    T. Li, Z. Chen, J.E. Johnson, G.J. Thomas, Biochemistry 131, 6673 (1992).CrossRefGoogle Scholar
  9. 9.
    G. Ribitsch, R. De Clercq, W. Folkhard, P. Zipper, J. Schurz, J. Clauwaert, Z. Naturforsch. C 40, 234 (1985).Google Scholar
  10. 10.
    M. Zuker, Nucleic Acids Res. 31, 3406 (2003).CrossRefGoogle Scholar
  11. 11.
    J. Rudnick, R. Bruinsma, Phys. Rev. Lett. 94, 038101 (2005).CrossRefADSGoogle Scholar
  12. 12.
    L. Tang, K.N. Johnson, L.A. Ball, T. Lin, M. Yeager, J.E. Johnson, Nature Struct. Biol. 8, 77 (2001).CrossRefGoogle Scholar
  13. 13.
    D.C. Rau, V.A. Parsegian, Biophys. J. 61, 246 (1992).Google Scholar
  14. 14.
    For a review see W. Gelbart, R. Bruinsma, P. Pincus, V.A. Parsegian, Phys. Today, September (2000) p. 38.Google Scholar
  15. 15.
    A. Evilevitch, L. Lavelle, C.M. Knobler, E. Raspaud, W.M. Gelbart, Proc. Natl. Acad. Sci. U.S.A. 100, 9292 (2003).CrossRefADSGoogle Scholar
  16. 16.
    C. Knobler, private communication.Google Scholar
  17. 17.
    D.E. Smith, S.J. Tans, S.B. Smith, S. Grimes, D.L. Anderson, C. Bustamante, Nature 413, 748 (2001).CrossRefADSGoogle Scholar
  18. 18.
    J.A. Speir, Structure 3, 63 (1995).CrossRefGoogle Scholar
  19. 19.
    Actually, the edges of the dodecahedral cage in Figure fig:6 are low-curvature borders between the pyramids.Google Scholar
  20. 20.
    K.W. Adolph, P.J. Butler, Philos. Trans. R. Soc. London, Ser. B 276, 113 (1976).Google Scholar
  21. 21.
    J. Johnson, J. Tang, Y. Nyame, D. Willits, M. Young, A. Zlotnick, Nano Lett. 5, 765 (2005).CrossRefGoogle Scholar
  22. 22.
    P. van der Schoot, R. Bruinsma, Phys. Rev. E 71, 061928 (2005).CrossRefADSGoogle Scholar
  23. 23.
    F. von Goeler, M. Muthukumar, J. Chem. Phys. 100, 7796 (1994).CrossRefADSGoogle Scholar
  24. 24.
    The physical meaning of the negative slope for $\langle\phi \rangle$ less than $\langle\phi \rangle^*$ in terms of the pressure is that, for $\xi$ less than $R$, the Gibbs free energy scales as the surface area of the shell. By Laplace's Law, this effective negative surface tension indeed should produce a negative pressure. However, in reality, the negative tension produced by the polymer adsorption is exactly cancelled by repulsion between the capsid proteins leading to a zero total surface tension (as in the Shulman criterion for surfactant bilayers). The actual pressure is thus zero for $\langle\phi\rangle$ less than $\langle\phi\rangle^*$. For $\xi$ greater than $R$, the Gibbs free energy no longer scales as the surface area and the capsid wall develops a true tension.Google Scholar
  25. 25.
    J. Day, Y.G. Kuznetsov, S.B. Larson, A. Greenwood, A. McPherson, Biophys. J. 80, 2364 (2001).CrossRefGoogle Scholar
  26. 26.
    K.N. Johnson, L. Tang, J.E. Johnson, L.A. Ball, J. Virol. 78, 11371 (2004).CrossRefGoogle Scholar
  27. 27.
    C.M. Ling, P.P. Hung, L.R. Overby, Virology 40, 920 (1970).CrossRefGoogle Scholar
  28. 28.
    A. Klug, Philos. Trans. R. Soc. London, Ser. B 354, 531 (1999).Google Scholar
  29. 29.
    M.H. Kolk, M. van der Graaf, S.S. Wijmenga, C.W. Pleij, H.A. Heus, C.W. Hilbers, Science 280, 434 (1998).CrossRefADSGoogle Scholar
  30. 30.
    P. Annamalai, A.L. Rao, Virology 332, 650 (2005).CrossRefGoogle Scholar
  31. 31.
    A. Zlotnick, J. Mol. Biol. 59, 241 (1994).Google Scholar
  32. 32.
    R. Bundschuh, T. Hwa, Phys. Rev. Lett. 83, 1479 (1999).CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Physics and AstronomyThe University of California at Los AngelesLos AngelesUSA

Personalised recommendations