The European Physical Journal E

, Volume 19, Issue 4, pp 441–452 | Cite as

Faceting and stability of smectic A droplets on a solid substrate

  • P. OswaldEmail author
  • L. Lejček
Regular Article


It is shown that a smectic A droplet deposited on a solid substrate treated for strong homeotropic anchoring is faceted at the top in spite of the fact that there are no steps at the free surface, but instead edge dislocations in the bulk. The radius of the facet and the full profile of the curved part of the droplet are determined as a function of the temperature in the vicinity of a nematic-smectic A phase transition. It is shown that the observed profiles do not correspond to the actual equilibrium shape, but to metastable configurations close to their point of marginal stability. In addition, we predict that the profiles must be different for a given temperature depending on whether the droplet has been heated or cooled down to reach this temperature. Finally, we discuss the problem of the formation of giant dislocations in big droplets (Grandjean terraces).


68.03.Cd Surface tension and related phenomena 61.30.Hn Surface phenomena: alignment, anchoring, anchoring transitions, surface-induced layering, surface-induced ordering, wetting, prewetting transitions, and wetting transitions 61.30.Jf Defects in liquid crystals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Wulff, Z. Kristallogr. 34, 449 (1901).Google Scholar
  2. 2.
    P. Nozières, Shape and growth of crystals, in Solid Far From Equilibrium, Beg Rohu Lectures, edited by C. Godreche (Cambridge University Press, Cambridge, 1992).Google Scholar
  3. 3.
    J.C. Heyraud, J.J. Métois, J.M. Bermond, J. Cryst. Growth 98, 355 (1989).CrossRefADSGoogle Scholar
  4. 4.
    J.M. Bermond, J.J. Métois, J.C. Heyraud, Surf. Sci. 416, 430 (1998).CrossRefADSGoogle Scholar
  5. 5.
    M.S. Hoogeman, M.A.J. Klik, D.C. Schlosser, L. Kuipers, J.W.M. Krenken, Surf. Sci. 448, 142 (2000).CrossRefADSGoogle Scholar
  6. 6.
    S. Balibar, H. Alles, A.Ya. Parshin, Rev. Mod. Phys. 77, 317 (2005).CrossRefADSGoogle Scholar
  7. 7.
    P. Pieranski, R. Barbet-Massin, P.E. Cladis, Phys. Rev. A 31, 3912 (1985).CrossRefADSGoogle Scholar
  8. 8.
    H. Stegemeyer, Th. Blümel, K. Hiltrop, H. Onusseit, F. Porsch, Liq. Cryst. 1, 3 (1986).Google Scholar
  9. 9.
    P. Oswald, P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments, The Liquid Crystal Book Series (Taylor & Francis, 2005).Google Scholar
  10. 10.
    P. Oswald, F. Melo, C. Germain, J. Phys. (Paris) 50, 3527 (1989).CrossRefGoogle Scholar
  11. 11.
    P. Oswald, P. Pieranski, Smectic and Columnar Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments, The Liquid Crystal Book Series (Taylor & Francis, 2005).Google Scholar
  12. 12.
    P. Pieranski, P. Sotta, D. Rohe, M. Imperor-Clerc, Phys. Rev. Lett. 84, 2409 (2000).CrossRefADSGoogle Scholar
  13. 13.
    P. Pieranski, L. Sittler, P. Sotta, M. Imperor-Clerc, Eur. J. Phys. E 5, 317 (2001).CrossRefGoogle Scholar
  14. 14.
    P. Pieranski, M. Bouchih, N. Ginestet, S. Popa-Nita, Eur. J. Phys. E 12, 239 (2003).CrossRefGoogle Scholar
  15. 15.
    P. Nozières, F. Pistolesi, S. Balibar, Eur. Phys. J. B 24, 387 (2001).CrossRefADSGoogle Scholar
  16. 16.
    J.D. Bernal, D. Crowfoot, Trans. Faraday Soc. 29, 1032 (1933).CrossRefGoogle Scholar
  17. 17.
    S. Chandrasekhar, Mol. Cryst. 2, 71 (1966).Google Scholar
  18. 18.
    S. Chandrasekhar, N.V. Madhusudana, Acta Crystallogr., Sect. A 26, 153 (1970).CrossRefMathSciNetGoogle Scholar
  19. 19.
    J. Bechhoefer, P. Oswald, Europhys. Lett. 15, 521 (1991).ADSGoogle Scholar
  20. 20.
    J. Bechhoefer, L. Lejček, P. Oswald, J. Phys. II 2, 27 (1992).CrossRefGoogle Scholar
  21. 21.
    L. Lejček, J. Bechhoefer, P. Oswald, J. Phys. II 2, 1511 (1992).CrossRefGoogle Scholar
  22. 22.
    L. Lejček, P. Oswald, J. Phys. II 1, 931 (1991).Google Scholar
  23. 23.
    This is due to the fact that the step energy per unit length, of the order of $\gamma b$ (with $\gamma$ the surface tension), is typically 3 to 10 times larger than the dislocation energy, of the order of $\sqrt{KB}b$ (where $K$ and $B$ are, respectively, the curvature constant and the compressibility modulus of the layers). As a consequence, the dislocations are both repulsed by the solid and the free surfaces and place roughly at mid-distance between them (more precisely, at distance $h/(1+A^{3/2})$ from the solid surface 22, by denoting by $h$ the local droplet thickness and by setting $A=(\gamma-\sqrt{KB})/(\gamma+\sqrt{KB})$).Google Scholar
  24. 24.
    J.-C. Géminard, R. Holyst, P. Oswald, Phys. Rev. Lett. 78, 1924 (1997).CrossRefADSGoogle Scholar
  25. 25.
    R. Jaquet, F. Schneider, Phys. Rev. E 67, 021707 (2003).CrossRefADSGoogle Scholar
  26. 26.
    A. Zywocinski, F. Picano, P. Oswald, J.C. Géminard, Phys. Rev. E 62, 8133 (2000).CrossRefADSGoogle Scholar
  27. 27.
    C. Williams, Défauts de structure dans les smectiques A, D.Sc. Thesis, University of Paris XI, Orsay (1976).Google Scholar
  28. 28.
    F. Grandjean, Bull. Soc. Fr. Minéral. 39, 164 (1916).Google Scholar
  29. 29.
    M. Kléman, J. Phys. (Paris) 35, 595 (1974).Google Scholar
  30. 30.
    J.C. Géminard, C. Laroche, P. Oswald, Phys. Rev. E 58, 5923 (1998).CrossRefADSGoogle Scholar
  31. 31.
    F. Picano, R. Holyst, P. Oswald, Phys. Rev. E 62, 3747 (2000).CrossRefADSGoogle Scholar
  32. 32.
    C.E. Williams, M. Kléman, J. Phys. (Paris) Colloq. 36, C1-315 (1976).Google Scholar
  33. 33.
    H. Dumoulin, Etude d'interfaces de cristaux liquides par microscopie de proximité, PhD Thesis, University of Paris XI, Orsay (1996).Google Scholar
  34. 34.
    S. Shibahara, J. Yamamoto, Y. Takanishi, K. Ishikawa, H. Takezoe, J. Phys. Soc. Jpn. 71, 802 (2002).CrossRefADSGoogle Scholar
  35. 35.
    M. Maaloum, D. Ausserré, D. Chatenay, G. Coulon, Y. Gallot, Phys. Rev. Lett. 68, 1575 (1992).CrossRefADSGoogle Scholar
  36. 36.
    M.S. Turner, M. Maaloum, D. Ausserré, J.-F. Joanny, M. Kunz, J. Phys. II 4, 689 (1994).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  1. 1.Laboratoire de PhysiqueEcole Normale Supérieure de LyonLyon cedex 07France
  2. 2.Institute of PhysicsCzech Academy of SciencesPrague 8Czech Republic

Personalised recommendations