Advertisement

The European Physical Journal E

, Volume 19, Issue 4, pp 433–440 | Cite as

Pinning-depinning of the contact line on nanorough surfaces

  • S. Ramos
  • A. Tanguy
Regular Article

Abstract.

We study the pinning-depinning phenomenon of a contact line on a solid surface decorated by a random array of nanometric structures. For this purpose, we have investigated the contact angle hysteresis behaviour of six different wetting and non-wetting fluids with surface tensions varying from 25 to 72mN m^-1. For low values of the areal density of defects φd, the hysteresis H increases linearly with φd indicating that “individual” defects pin the contact line. Then, from a given value of φd, the hysteresis H becomes to decrease with increasing φd, indicating a new kind of collective depinning. These two regimes were observed for all fluids used. In both cases, our experimental results are compared with the theoretical predictions for contact angle hysteresis induced by single or multiple topographical defects. We ascribe the decrease of H to the formation of cavities along the wetting front.

PACS.

68.08.Bc Wetting 61.30.Hn Surface phenomena: alignment, anchoring, anchoring transitions, surface-induced layering, surface-induced ordering, wetting, prewetting transitions, and wetting transitions 61.46.-w Nanoscale materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985).CrossRefADSGoogle Scholar
  2. 2.
    Matthew T. Spuller, Dennis W. Hess, J. Electrochem. Soc. 150, G476 (2003).Google Scholar
  3. 3.
    A.A. Darhuber, S.M. Troian, J. Appl. Phys. 90, 3602 (2001).CrossRefADSGoogle Scholar
  4. 4.
    H. Gau, S. Herminghauss, P. Lenz, R. Lipowsky, Science 283, 46 (1999).CrossRefADSGoogle Scholar
  5. 5.
    E. Bouchaud, J. Phys.: Condens. Matter 9, 4319 (1997).CrossRefADSGoogle Scholar
  6. 6.
    S. Zapperi, P. Ciseau, G. Durin, E. Stanley, Phys. Rev. B 58, 6353 (1998).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    A.I. Larkin, N.Y. Ovchinnikov, J. Low Temp. Phys. 34, 409 (1979).CrossRefGoogle Scholar
  8. 8.
    J.F. Joanny, P.G. de Gennes, J. Chem. Phys. 81, 552 (1984)CrossRefADSGoogle Scholar
  9. 9.
    J.-M. di Meglio, M.E.R. Shanahan, C. R. Acad. Sci. Paris, 316, 1543 (1993).Google Scholar
  10. 10.
    Ramin Golestanian, Elie Raphaël, Phys. Rev. E 64, 031601 (2001).CrossRefADSGoogle Scholar
  11. 11.
    A. Tanguy, T. Vettorel, Eur. Phys. J. B 38, 71 (2004).CrossRefADSGoogle Scholar
  12. 12.
    R.E. Johnson, R.H. Dettre, Surface and Colloid Science, edited by E. Matijevic, Vol. 2 (Interscience, New York, 1969).Google Scholar
  13. 13.
    V. De Jonghe, D. Chatain, I. Rivollet, N. Eustathopoulos, J. Chem. Phys. 87, 1623 (1990).Google Scholar
  14. 14.
    J.-M. di Meglio, Europhys. Lett. 17, 607 (1992).ADSGoogle Scholar
  15. 15.
    J.-M. di Meglio, D. Quéré, Europhys. Lett. 11, 163 (1990).ADSGoogle Scholar
  16. 16.
    J. Crassous, E. Charlaix, Europhys. Lett. 28, 415 (1994)Google Scholar
  17. 17.
    J. Bico, C. Tordeux, D. Quéré, Europhys. Lett. 55, 214 (2001).CrossRefGoogle Scholar
  18. 18.
    A. Paterson, M. Fermigier, Phys. Fluids 9, 2210 (1997)CrossRefADSGoogle Scholar
  19. 19.
    T. Cubaud, PhD Thesis, University of Paris XI (2001)Google Scholar
  20. 20.
    A. Prevost, E. Rolley, C. Guthmann, Phys. Rev. Lett. 83, 348 (1999).CrossRefADSGoogle Scholar
  21. 21.
    S.M.M. Ramos, E. Charlaix, A. Benyagoub, M. Toulemonde, Phys. Rev. E 67, 031604 (2003).CrossRefADSGoogle Scholar
  22. 22.
    S.M.M. Ramos, E. Charlaix, A. Benyagoub, Surf. Sci. 540, 355 (2003).CrossRefADSGoogle Scholar
  23. 23.
    See, for example, J. Rottler, M. Robbins, Phys. Rev. E 68, 011507 (2003).CrossRefGoogle Scholar
  24. 24.
    This expression is a first-order approximation. The more general expression can be found in R.G. Cox, J. Fluid Mech. 131, 1 (1983). In our case, the second-order contribution due to a ${\theta_{m}^{2}} \cotan(\theta_{0})$ contribution inside the cos function is negligible.CrossRefADSzbMATHMathSciNetGoogle Scholar
  25. 25.
    The criterion to get an instability of the contact line (see 14) compares the maximum local curvature of the defects to the stiffness $K$ of the contact line. However, the curvature of the defects is approximately $f_{\ab{d}}/d$.Google Scholar
  26. 26.
    It must be emphasized that the correlation length $L_{\ab{c}}$ is not a Larkin length, because it is defined in the strong pinning regime. $L_{\ab{c}}$ evolves with the density of defects. It characterizes the shape of the wetting front during its relaxation. See 11.Google Scholar
  27. 27.
    L. Boruvka, A.W. Neumann, J. Colloid Interface Sci., 65, 315 (1978).Google Scholar
  28. 28.
    J.W. Tyrell, P. Attard, Phys. Rev. Lett. 87, 176104 (2001).CrossRefADSGoogle Scholar
  29. 29.
    Naoyuki Ishida, Taichi Inoue, Minoru Miyahara, Ko Higashtani, Langmuir 16, 6377 (2000).CrossRefGoogle Scholar
  30. 30.
    Jingwu Yang, Jinling Duan, Daniel Fornasiero, John Ralston, J. Chem. Phys. B. 107, 6139 (2003).CrossRefGoogle Scholar
  31. 31.
    Shi-Tao Lou, Zhen-Qian Ouyang, Yi Zhang, Xiao-Jun Li, Jun Hu, Min-Qian Li, Fu-Jia Yang, J. Vac. Sci. Technol. B 18, 2573 (2000).CrossRefGoogle Scholar
  32. 32.
    S. Moulinet, PhD Thesis, University of Paris VII (2003).Google Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  • S. Ramos
    • 1
  • A. Tanguy
    • 1
  1. 1.Laboratoire de Physique de la Matière Condensée et Nanostructures (UMR 5586)Université Claude Bernard Lyon 1 et CNRS - Domaine Scientifique de la DouaVilleurbanne CedexFrance

Personalised recommendations