The European Physical Journal E

, Volume 19, Issue 4, pp 399–412 | Cite as

Theory of myelin coiling

  • J. -R. HuangEmail author
Regular Article


A new model is proposed to explain coiling of myelins composed of fluid bilayers. This model allows the constituent bilayer cylinders of a myelin to be non-coaxial and the bilayer lateral tension to vary from bilayer to bilayer. The calculations show that a myelin would bend or coil to lower its free energy when the bilayer lateral tension is sufficiently large. From a mechanical point of view, the proposed coiling mechanism is analogous to the classical Euler buckling of a thin elastic rod under axial compression. The analysis of a simple two-bilayer case suggests that a bilayer lateral tension of about 1 dyne/cm can easily induce coiling of myelins of typical lipid bilayers. This model signifies the importance of bilayer lateral tension in determining the morphology of myelinic structures.


87.16.Dg Membranes, bilayers, and vesicles 82.70.Uv Surfactants, micellar solutions, vesicles, lamellae, amphiphilic systems (hydrophilic and hydrophobic interactions) 82.70.-y Disperse systems; complex fluids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O.G. Mouritsen, Life - As a Matter of Fat: The Emerging Science of Lipidomics (Springer, Berlin, 2005).Google Scholar
  2. 2.
    J.N. Israelachvili, Intermolecular and Surface Forces, 2nd ed. (Academic Press, San Diego, 1998).Google Scholar
  3. 3.
    R.G. Laughlin, The Aqueous Phase Behavior of Surfactants (Academic Press, San Diego, 1996).Google Scholar
  4. 4.
    W. Harbich, W. Helfrich, Chem. Phys. Lipids 36, 39 (1984).CrossRefGoogle Scholar
  5. 5.
    W.J. Benton, K.H. Raney, C.A. Miller, J. Colloid Interface Sci. 110, 363 (1986).CrossRefGoogle Scholar
  6. 6.
    I. Sakurai, T. Suzuki, S. Sakurai, Mol. Cryst. Liq. Cryst. 180B, 305 (1990).Google Scholar
  7. 7.
    M. Buchanan, S.U. Egelhaaf, M.E. Cates, Langmuir 16, 3718 (2000).CrossRefMathSciNetGoogle Scholar
  8. 8.
    M. Haran, A. Chowdhury, C. Manohar, J. Bellare, Colloids Surf. A 205, 21 (2002). CrossRefGoogle Scholar
  9. 9.
    L.-N. Zou, S.R. Nagel, 0509740.Google Scholar
  10. 10.
    K.-C. Lin, R.M. Weis, H.M. McConnell, Nature 296, 164 (1982).CrossRefADSGoogle Scholar
  11. 11.
    I. Sakurai, Mol. Cryst. Liq. Cryst. 130, 203 (1985).Google Scholar
  12. 12.
    K. Mishima, K. Fukuda, K. Suzuki, Biochim. Biophys. Acta 1108, 115 (1992).Google Scholar
  13. 13.
    V. Frette, Phys. Rev. Lett. 83, 2465 (1999)CrossRefADSGoogle Scholar
  14. 14.
    H. Dave, M. Surve, C. Manohar, J. Bellare, J. Colloid Interface Sci. 264, 76 (2003).CrossRefGoogle Scholar
  15. 15.
    D.D. Lasic, Liposomes: From Physics to Applications (Elsevier, Amsterdam, 1993).Google Scholar
  16. 16.
    J.-R. Huang, L.-N. Zou, T.A. Witten, Eur. Phys. J. E 18, 279 (2005).CrossRefGoogle Scholar
  17. 17.
    C.D. Santangelo, P. Pincus, Phys. Rev. E 66, 061501 (2002).CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    E. Evans, R. Skalak, Mechanics and Thermodynamics of Biomembranes (CRC Press, Boca Raton, 1980).Google Scholar
  19. 19.
    W. Helfrich, R.-M. Servuss, Nuovo Cimento D 3, 137 (1984).ADSGoogle Scholar
  20. 20.
    A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th ed. (Dover, New York, 1944).Google Scholar
  21. 21.
    K. Mishima, K. Yoshiyama, Biochim. Biophys. Acta 904, 149 (1987).Google Scholar
  22. 22.
    A. Sein, J.B.F.N. Engberts, Langmuir 12, 2924 (1996).CrossRefGoogle Scholar
  23. 23.
    T.A. Witten, Structured Fluids: Polymers, Colloids, Surfactants (Oxford University Press, New York, 2004).Google Scholar
  24. 24.
    D.J. Struik, Lectures on Classical Differential Geometry, 2nd ed. (Dover, New York, 1988).Google Scholar
  25. 25.
    E. Evans, D. Needham, J. Phys. Chem. 91, 4219 (1987).CrossRefGoogle Scholar
  26. 26.
    E. Evans, W. Rawicz, Phys. Rev. Lett. 64, 2094 (1990).CrossRefADSGoogle Scholar
  27. 27.
    R.P. Rand, V.A. Parsegian, Biochim. Biophys. Acta 988, 351 (1989).Google Scholar
  28. 28.
    W. Helfrich, Z. Naturforsch. 33a, 305 (1978).ADSGoogle Scholar
  29. 29.
    H. Diamant, M.E. Cates, Eur. Phys. J. E 4, 223 (2001).CrossRefGoogle Scholar
  30. 30.
    U. Seifert, Phys. Rev. Lett. 74, 5060 (1995).CrossRefADSGoogle Scholar
  31. 31.
    R.R. Netz, R. Lipowsky, Europhys. Lett. 29, 345 (1995).Google Scholar
  32. 32.
    R. Bar-Ziv, E. Moses, Phys. Rev. Lett. 73, 1392 (1994).CrossRefADSGoogle Scholar
  33. 33.
    J.E. Curtis, B.A. Koss, D.G. Grier, Opt. Commun. 207, 169 (2002).CrossRefADSGoogle Scholar
  34. 34.
    R. Bar-Ziv, E. Moses, P. Nelson, Biophys. J. 75, 294 (1998).CrossRefGoogle Scholar
  35. 35.
    M. Kléman, Points, Lines and Walls: In Liquid Crystals, Magnetic Systems and Various Ordered Media (John Wiley & Sons, New York, 1983).Google Scholar
  36. 36.
    S.-J. Marrink, H.J.C. Berendsen, J. Phys. Chem. 98, 4155 (1994).CrossRefADSGoogle Scholar
  37. 37.
    P.B. Warren, M. Buchanan, Curr. Opin. Colloid Interface Sci. 6, 287 (2001).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  1. 1.James Franck Institute and Department of PhysicsUniversity of ChicagoChicagoUSA

Personalised recommendations