Advertisement

The European Physical Journal E

, Volume 18, Issue 2, pp 239–244 | Cite as

Exact curvilinear diffusion coefficients in the repton model

  • A. BuhotEmail author
Original Article

Abstract.

The Rubinstein-Duke or repton model is one of the simplest lattice model of reptation for the diffusion of a polymer in a gel or a melt. Recently, a slightly modified model with hardcore interactions between the reptons has been introduced. The curvilinear diffusion coefficients of both models are exactly determined for all chain lengths. The case of periodic boundary conditions is also considered.

PACS.

36.20.-r Macromolecules and polymer molecules 83.10.Kn Reptation and tube theories 05.40.Jc Brownian motion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.G. de Gennes, J. Chem. Phys. 55, 572 (1971).CrossRefGoogle Scholar
  2. 2.
    M. Rubinstein, Phys. Rev. Lett. 59, 1946 (1987).CrossRefPubMedGoogle Scholar
  3. 3.
    T.A.J. Duke, Phys. Rev. Lett. 62, 2877 (1989).CrossRefPubMedGoogle Scholar
  4. 4.
    J.-L. Viovy, Rev. Mod. Phys. 72, 813 (2000).CrossRefGoogle Scholar
  5. 5.
    G.W. Slater , Electrophoresis 23, 3791 (2002).CrossRefPubMedGoogle Scholar
  6. 6.
    S.T. Milner, T.C.B. McLeish, Phys. Rev. Lett. 81, 725 (1998).CrossRefGoogle Scholar
  7. 7.
    T.P. Lodge, Phys. Rev. Lett. 83, 3218 (1999).CrossRefGoogle Scholar
  8. 8.
    S.-Q. Wang, J. Polym. Sci. Part B: Polym. Phys. 41, 1589 (2003).CrossRefGoogle Scholar
  9. 9.
    B. Widom, J.L. Viovy, A.D. D'esfontaines, J. Phys. I 1, 1759 (1991).Google Scholar
  10. 10.
    J.T. Barkema, J.F. Marko, B. Widom, Phys. Rev. E 49, 5303 (1994).CrossRefGoogle Scholar
  11. 11.
    M. Prähofer, H. Spohn, Physica A 233, 191 (1996).CrossRefGoogle Scholar
  12. 12.
    M.E.J. Newman, G.T. Barkema, Phys. Rev. E 56, 3468 (1997).CrossRefGoogle Scholar
  13. 13.
    E. Carlon, A. Drzewinski, J.M.J. van Leeuwen, Phys. Rev. E 64, 010801(R) (2001)CrossRefGoogle Scholar
  14. 14.
    F. Brochard, P.G. de Gennes, J. Chem. Phys. 67, 52 (1977).Google Scholar
  15. 15.
    T. Odijk, Macromolecules 16, 1340 (1983).CrossRefGoogle Scholar
  16. 16.
    J.O. Tegenfeldt , Proc. Natl. Acad. Sci. U.S.A. 101, 10979 (2004).CrossRefPubMedGoogle Scholar
  17. 17.
    W. Reisner , Phys. Rev. Lett. 94, 196101 (2005).CrossRefPubMedGoogle Scholar
  18. 18.
    C. Wei, D. Srivastava, Phys. Rev. Lett. 91, 235901 (2003).CrossRefPubMedGoogle Scholar
  19. 19.
    G. Terranova, C.M. Aldao, H.O. M'artin, Phys. Rev. E 71, 021103 (2005).Google Scholar
  20. 20.
    S.E. Guidoni, H.O. M'artin, C.M. Aldao, Eur. Phys. J. E 7, 291 (2002)CrossRefGoogle Scholar
  21. 21.
    J.M.J. van Leeuwen, A. Kooiman, Physica A 184, 79 (1992).CrossRefGoogle Scholar
  22. 22.
    A. Kooiman, J.M.J. van Leeuwen, J. Chem. Phys. 99, 2247 (1993).CrossRefGoogle Scholar
  23. 23.
    J.M. Deutsch, T.L. Maden, J. Phys. Chem. 91, 3252 (1989).Google Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  1. 1.Département de Recherche Fondamentale sur la Matière Condensée, CEA GrenobleUMR 5819 (UJF, CNRS, CEA) SPrAMGrenobleFrance

Personalised recommendations