The European Physical Journal E

, Volume 18, Issue 2, pp 231–237 | Cite as

Theoretical model of the transition between C1 and C2 chevron structures in smectic liquid crystals

  • A. Diaz
  • N. J. MottramEmail author
  • G. McKay
Original Article


We present a study of the effect of weak anchoring on the transition between C1 and C2 chevron structures in smectic-C liquid crystals. The coexistence of C1 and C2 chevron structures within a single cell causes zigzag defects to occur and may affect the optical characteristics of the cell. By standard Euler-Lagrange minimisation of the total energy of the system, we obtain analytical expressions for the equilibrium director cone angle in the two chevron states. These in turn allow us to compare the total energies of the states and determine the globally stable chevron profile. We show that analytical predictions for the critical transition temperature, which depends on anchoring strength and pretilt angle, are in good agreement with those obtained numerically.


61.30.Dk Continuum models and theories of liquid crystal structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.P. Rieker, N.A. Clark, G.S. Smith, G.S. Parmar, E.B. Sirota, C.R. Safinya, Phys. Rev. Lett. 59, 2658 (1987).CrossRefPubMedGoogle Scholar
  2. 2.
    N.A. Clark, T.P. Rieker, Phys. Rev. A 37, 1053 (1988).CrossRefPubMedGoogle Scholar
  3. 3.
    S.T. Lagerwall, Ferroelectric and Anti-ferroelectric Liquid Crystals (Wiley-VCH, Weinheim 1999).Google Scholar
  4. 4.
    N.A. Clark, S.T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980).CrossRefGoogle Scholar
  5. 5.
    M. Nakagawa, Mol. Cryst. Liq. Cryst. 174, 65 (1989).Google Scholar
  6. 6.
    M. Nakagawa, Displays 11, 67 (1990).CrossRefGoogle Scholar
  7. 7.
    S. Mukai, M. Nakagawa, J. Phys. Soc. Jpn. 62, 1984 (1993).CrossRefGoogle Scholar
  8. 8.
    C. Anderson, PhD Thesis, University of Strathclyde (1999).Google Scholar
  9. 9.
    A. de Meyere, H. Paulwels, E. de Ley, Liq. Cryst. 14, 1269 (1993).Google Scholar
  10. 10.
    L. Limat, J. Prost, Liq. Cryst. 13, 101(1993).Google Scholar
  11. 11.
    L. Limat, J. Phys. II 5, 803 (1995).CrossRefGoogle Scholar
  12. 12.
    N.J. Mottram, N. Ul Islam, S.J. Elston, Phys. Rev. E 60, 613 (1999).CrossRefGoogle Scholar
  13. 13.
    N. Vaupotič, S. Kralj, M. Čopič, T.J. Sluckin, Phys. Rev. E 54, 3783 (1996).CrossRefGoogle Scholar
  14. 14.
    S.M. Beldon, N.J. Mottram, S.J. Elston, Mol. Cryst. Liq. Cryst. 365, 729 (2001).Google Scholar
  15. 15.
    A.N. Shalaginov, L.D. Hazelwood, T.J. Sluckin, Phys. Rev. E 58, 7455 (1998).CrossRefGoogle Scholar
  16. 16.
    A.N. Shalaginov, L.D. Hazelwood, T.J. Sluckin, Phys. Rev. E 60, 4199 (1999).CrossRefGoogle Scholar
  17. 17.
    A. Diaz, N.J. Mottram, G. McKay, Mol. Cryst. Liq. Cryst. 438, 1581 (2005).Google Scholar
  18. 18.
    C. Wang, R. Kurihara, P.J. Bos, S. Kobayashi, J. Appl. Phys. 90, 4452 (2001).CrossRefGoogle Scholar
  19. 19.
    A.S. Morse, H.F. Gleeson, S. Cummings, Liq. Cryst. 23, 717 (1997).CrossRefGoogle Scholar
  20. 20.
    I.W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals (Taylor and Francis, London and New York, 2004). Google Scholar
  21. 21.
    S.A. Pikin, Structural Transformations in Liquid Crystals (Gordon & Breach, New York, 1991).Google Scholar
  22. 22.
    S.J. Elston, J.R. Sambles, The Optics of Thermotropic Liquid Crystals (Taylor and Francis, London and New York, 1998).Google Scholar
  23. 23.
    F. Giesselmann, P. Zugenmaier, I. Dierking, S.T. Lagerwall, B. Stebler, M. Kaspar, V. Hamplova, M. Glogarova, Phys. Rev. E 60, 598 (1999).CrossRefGoogle Scholar
  24. 24.
    N.J. Mottram, S.J. Elston, Eur. Phys. J. B 12, 277 (1999).CrossRefGoogle Scholar
  25. 25.
    D. Demus, J.W. Goodby, G.W. Gray, H.W. Spiess, V. Vill, Handbook of Liquid Crystals, Vol. 1 (Wiley-VCH, Weinheim, 1998).Google Scholar
  26. 26.
    C.V. Brown, J.C. Jones, P.E. Dunn, Mol. Cryst. Liq. Cryst. A 331, 2325 (1999).Google Scholar
  27. 27.
    A. Findon, H.F. Gleeson, Ferroelectrics 277, 35 (2002).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of StrathclydeGlasgowUK

Personalised recommendations