Advertisement

The European Physical Journal E

, Volume 18, Issue 2, pp 183–199 | Cite as

Self-propelled running droplets on solid substrates driven by chemical reactions

  • K. JohnEmail author
  • M. Bär
  • U. Thiele
Original Article

Abstract.

We study chemically driven running droplets on a partially wetting solid substrate by means of coupled evolution equations for the thickness profile of the droplets and the density profile of an adsorbate layer. Two models are introduced corresponding to two qualitatively different types of experiments described in the literature. In both cases an adsorption or desorption reaction underneath the droplets induces a wettability gradient on the substrate and provides the driving force for droplet motion. The difference lies in the behavior of the substrate behind the droplet. In case I the substrate is irreversibly changed whereas in case II it recovers allowing for a periodic droplet movement (as long as the overall system stays far away from equilibrium). Both models allow for a non-saturated and a saturated regime of droplet movement depending on the ratio of the viscous and reactive time scales. In contrast to model I, model II allows for sitting drops at high reaction rate and zero diffusion along the substrate. The transition from running to sitting drops in model II occurs via a super- or subcritical drift-pitchfork bifurcation and may be strongly hysteretic implying a coexistence region of running and sitting drops.

PACS.

68.15.+e Liquid thin films 47.20.Ky Nonlinearity (including bifurcation theory) 47.70.Fw Chemically reactive flows 68.43.-h Chemisorption/physisorption: adsorbates on surfaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Newton, Opticks (G. Bell & Sons LTD., London, 1931) (reprinted 4th ed. 1730) Book III, Part 1, Querie 31.Google Scholar
  2. 2.
    F. Hauksbee, Philos. Trans. 27, 395 (1710).Google Scholar
  3. 3.
    M.G. Velarde, Philos. Trans. R. Soc. London Ser. A 356, 829 (1998).Google Scholar
  4. 4.
    F. Brochard, Langmuir 5, 432 (1989).CrossRefGoogle Scholar
  5. 5.
    H.P. Greenspan, J. Fluid Mech. 84, 125 (1978).Google Scholar
  6. 6.
    E. Raphaël, C.R. Acad. Sci., Ser. II 306, 751 (1988).Google Scholar
  7. 7.
    M.K. Chaudhury, G.M. Whitesides, Science 256, 1539 (1992).Google Scholar
  8. 8.
    K. Ichimura, S.K. Oh, M. Nakagawa, Science 288, 1624 (2000).CrossRefPubMedGoogle Scholar
  9. 9.
    J.F. Joanny, F. Jülicher, J. Prost, Phys. Rev. Lett. 90, 168102 (2003).PubMedGoogle Scholar
  10. 10.
    Venturi, Ann. Chimie XXI, 262 (1799).Google Scholar
  11. 11.
    C. Tomlinson, Philos. Mag. Ser. 4 46, 409 (1869).Google Scholar
  12. 12.
    L. Rayleigh, Proc. R. Soc. London 47, 364 (1890).Google Scholar
  13. 13.
    Y. Hayashima, M. Nagayama, Y. Doi, S. Nakata, M. Kimura, M. Iida, Phys. Chem. Chem. Phys. 4, 1386 (2002).Google Scholar
  14. 14.
    R.L. Cottington, C.M. Murphy, C.R. Singleterry, Adv. Chem. Ser. 43, 341 (1964).Google Scholar
  15. 15.
    J. Bico, D. Quéré, Europhys. Lett. 51, 546 (2000).CrossRefGoogle Scholar
  16. 16.
    C.G. Marangoni, Ann. Phys. (Poggendorf) 143, 337 (1871) Observation 16.Google Scholar
  17. 17.
    A.Y. Rednikov, Y.S. Ryazantsev, M.G. Velarde, Phys. Fluids 6, 451 (1994).CrossRefGoogle Scholar
  18. 18.
    H. Riegler, personal communication (2003).Google Scholar
  19. 19.
    A. Yochelis, L.M. Pismen, Phys. Rev. E 72, 025301(R) (2005).CrossRefGoogle Scholar
  20. 20.
    C.D. Bain, G.D. Burnetthall, R.R. Montgomerie, Nature 372, 414 (1994).CrossRefGoogle Scholar
  21. 21.
    F. Domingues Dos Santos, T. Ondarçuhu, Phys. Rev. Lett. 75, 2972 (1995).CrossRefPubMedGoogle Scholar
  22. 22.
    S.W. Lee, P.E. Laibinis, J. Am. Chem. Soc. 122, 5395 (2000).CrossRefGoogle Scholar
  23. 23.
    S.W. Lee, D.Y. Kwok, P.E. Laibinis, Phys. Rev. E 65, 051602 (2002).CrossRefGoogle Scholar
  24. 24.
    Y. Sumino, N. Magome, T. Hamada, K. Yoshikawa, Phys. Rev. Lett. 94, 068301 (2005).CrossRefPubMedGoogle Scholar
  25. 25.
    Y. Sumino, H. Kitahata, K. Yoshikawa, M. Nagayama, S.M. Nomura, N. Magome, Y. Mori, Phys. Rev. E 72, 041603 (2005).CrossRefGoogle Scholar
  26. 26.
    R. Magerle, personal communication (2003).Google Scholar
  27. 27.
    A.K. Schmid, N.C. Bartelt, R.Q. Hwang, Science 290, 1561 (2000).PubMedGoogle Scholar
  28. 28.
    K. Landry, N. Eustathopoulos, Acta Mater. 44, 3923 (1996).CrossRefGoogle Scholar
  29. 29.
    F.G. Yost, Scr. Mater. 38, 1225 (1998).CrossRefGoogle Scholar
  30. 30.
    J.A. Warren, W.J. Boettinger, A.R. Roosen, Acta Mater. 46, 3247 (1998).CrossRefGoogle Scholar
  31. 31.
    R. Voitovitch, A. Mortensen, F. Hodaj, N. Eustathopoulos, Acta Mater. 47, 1117 (1999).CrossRefGoogle Scholar
  32. 32.
    E. Saiz, R.M. Cannon, A.P. Tomsia, Acta Mater. 48, 4449 (2000).CrossRefGoogle Scholar
  33. 33.
    W.B. Webb, G.S. Grest, Scr. Mater. 47, 393 (2002).CrossRefGoogle Scholar
  34. 34.
    D.W. Zheng, W. Wen, K.N. Tu, Phys. Rev. E 57, R3719 (1998).Google Scholar
  35. 35.
    S. Kalogeropoulou, C. Rado, N. Eustathopoulos, Scr. Mater. 41, 723 (1999).Google Scholar
  36. 36.
    F. Brochard-Wyart, P.-G. de Gennes, C.R. Acad. Sci., Ser. II 321, 285 (1995).Google Scholar
  37. 37.
    P.-G. de Gennes, Physica A 249, 196 (1998).Google Scholar
  38. 38.
    A. Mikhailov, D. Meinköhn, in Lect. Notes Phys., Vol. 484 (Springer, 1997) pp. 334-345.Google Scholar
  39. 39.
    P.-G. de Gennes, C. R. Acad. Sci., Ser. II 327, 147 (1999).Google Scholar
  40. 40.
    P.G. de Gennes, Europhys. Lett. 39, 407 (1997).Google Scholar
  41. 41.
    U. Thiele, K. John, M. Bär, Phys. Rev. Lett. 93, 027802 (2004).PubMedGoogle Scholar
  42. 42.
    A. Oron, S.H. Davis, S.G. Bankoff, Rev. Mod. Phys. 69, 931 (1997).CrossRefGoogle Scholar
  43. 43.
    P.-G. de Gennes, Rev. Mod. Phys. 57, 827 (1985).CrossRefGoogle Scholar
  44. 44.
    R.J. Hunter, Foundation of Colloid Science, Vol. 1 (Clarendon Press, Oxford, 1992).Google Scholar
  45. 45.
    J.N. Israelachvili, Intermolecular and Surface Forces (Academic Press, London, 1992).Google Scholar
  46. 46.
    U. Thiele, K. Neuffer, Y. Pomeau, M.G. Velarde, Colloid Surf. A 206, 135 (2002).CrossRefGoogle Scholar
  47. 47.
    R.F. Probstein, Physicochemical Hydrodynamics, 2nd ed. (Wiley, New York, 1994).Google Scholar
  48. 48.
    Note that the disjoining pressure used in reference TJB04 was $\Pi(h)=\frac{2 S_a d_0^2}{h^3} + \frac{S_p}{l}\,\left(1+\frac{\phi}{g}\right)\exp\left[\frac{d_0-h}{l}\right]$, where for $\phi=0$, $S_a$ and $S_p$ are the apolar and polar components of the total spreading coefficient $S=S_a+S_p$, respectively, and $l$ is a correlation length Shar93. One usually describes the choice $S_a>0$ and $S_p<0$ as a combination of a stabilizing long-range van der Waals and a destabilizing short-range polar interaction. The apparent contradiction of qualitative similar results for model I for different verbal descriptions and combinations of signs used here and in reference TJB04 results from a subtle feature of the combination of exponential and power law. Combining a term $\sim 1/h^3$ and one $\sim \exp (-h)$ leads for a proper choice of parameters to a dominance of $1/h^3$ for large and very small $h$. The exponential only dominates for intermediate thicknesses (see U. Thiele, M.G. Velarde, K. Neuffer, Phys. Rev. Lett. 87, 016104 (2001) for a related phase diagram). This implies that the above verbal description only covers part of the feature of the disjoining pressure. On the contrary, the combination of two power laws used here clearly attributes the long-range and short-range forces to the terms $h^{-3}$ and $h^{-6}$, respectively. We therefore believe, that the chosen disjoining pressure more accurately represents the physical situation.CrossRefPubMedGoogle Scholar
  49. 49.
    A. Sharma, Langmuir 9, 861 (1993). CrossRefGoogle Scholar
  50. 50.
    E. Doedel, H.B. Keller, J.P. Kernevez, Int. J. Bif. Chaos 1, 493 (1991).Google Scholar
  51. 51.
    E. Doedel, H.B. Keller, J.P. Kernevez, Int. J. Bif. Chaos 1, 745 (1991).CrossRefGoogle Scholar
  52. 52.
    E.J. Doedel, A.R. Champneys, T.F. Fairgrieve, Y.A. Kuznetsov, B. Sandstede, X.J. Wang, AUTO97: Continuation and Bifurcation Software for Ordinary Differential Equations (Concordia University, Montreal, 1997).Google Scholar
  53. 53.
    U. Thiele, K. Neuffer, M. Bestehorn, Y. Pomeau, M.G. Velarde, Colloid Surf. A 206, 87 (2002).CrossRefGoogle Scholar
  54. 54.
    M. Kness, L.S. Tuckerman, D. Barkley, Phys. Rev. A 46, 5054 (1992).CrossRefPubMedGoogle Scholar
  55. 55.
    K. Krischer, A. Mikhailov, Phys. Rev. Lett. 73, 3165 (1994).CrossRefPubMedGoogle Scholar
  56. 56.
    A. Hagberg, E. Meron, Chaos 4, 477 (Sept. 1994).Google Scholar
  57. 57.
    M. Or-Guil, M. Bode, C.P. Schenk, H.-G. Purwins, Phys. Rev. E 57, 6432 (1998).CrossRefGoogle Scholar
  58. 58.
    H.U. Bödeker, M.C. Röttger, A.W. Liehr, T.D. Frank, R. Friedrich, H.-G. Purwins, Phys. Rev. E 67, 056220 (2003).CrossRefGoogle Scholar
  59. 59.
    M.R.E. Proctor, C.A. Jones, J. Fluid Mech. 188, 301 (1988).Google Scholar
  60. 60.
    P. Coullet, R.E. Goldstein, G.H. Gunaratne, Phys. Rev. Lett. 63, 1954 (1989).CrossRefPubMedGoogle Scholar
  61. 61.
    E. Knobloch, D.R. Moore, Phys. Rev. A 42, 4693 (1990).CrossRefPubMedGoogle Scholar
  62. 62.
    H. Riecke, H.G. Paap, Phys. Rev. A 45, 8605 (1992).CrossRefPubMedGoogle Scholar
  63. 63.
    U. Thiele, E. Knobloch, Physica D 190, 213 (2004).CrossRefGoogle Scholar
  64. 64.
    U. Thiele, E. Knobloch, Phys. Fluids 15, 892 (2003).CrossRefGoogle Scholar
  65. 65.
    D. Merkt, A. Pototsky, M. Bestehorn, U. Thiele, Phys. Fluids 17, 064104 (2005).CrossRefGoogle Scholar
  66. 66.
    NAG C library, Mark 6 (2000), www.nag.co.uk.Google Scholar
  67. 67.
    L.M. Pismen, Y. Pomeau, Phys. Fluids 16, 2604 (2004).CrossRefGoogle Scholar
  68. 68.
    A. Pototsky, M. Bestehorn, D. Merkt, U. Thiele, Phys. Rev. E 70, 025201(R) (2004).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  1. 1.Max-Planck-Institut für Physik komplexer SystemeDresdenGermany
  2. 2.Physikalisch-Technische BundesanstaltBerlinGermany

Personalised recommendations