Advertisement

The European Physical Journal E

, Volume 18, Issue 2, pp 207–217 | Cite as

Electric birefringence study of an amyloid fibril system: The short end of the length distribution

  • S. S. Rogers
  • P. Venema
  • J. P. M. van der Ploeg
  • L. M. C. Sagis
  • A. M. Donald
  • E. van der Linden
Original Article

Abstract.

In this article, a system of amyloid fibrils, based on the protein β-lactoglobulin, is studied by transient electric birefringence. Single pulses of an electric field were applied to the solution, and the initial rise and subsequent decay of birefringence analysed. The decay takes place on a range of relaxation times, and therefore contains information about the length distribution of fibrils in the system. The information can be extracted using theories of the electric polarisability of polyelectrolyte rods, since the fibrils are an example of these. Despite the long-standing complications of such theories, useful quantitative information about the system can still be obtained. Using the Fixman model of polyelectrolyte polarisability, we obtain a measurement of the short end of the length distribution which shows the fibril concentration as a function of length rising linearly from 0.02-2 μm. The short end of the length distribution was unobtainable in our previous study using rheo-optics (S.S. Rogers et al., Macromolecules 38, 2948 (2005)), but reasonable agreement between the two techniques shows they are complementary.

PACS.

82.35.Pq Biopolymers, biopolymerization 82.35.Rs Polyelectrolytes 83.85.Ns Data analysis (interconversion of data computation of relaxation and retardation spectra; time-temperature superposition, etc.) 87.14.Ee Proteins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.W. Kelly, Curr. Opin. Struct. Biol. 8, 101 (1998).CrossRefPubMedGoogle Scholar
  2. 2.
    C.M. Dobson, Philos. Trans. R. Soc. London, Ser. B 356, 133 (2001).Google Scholar
  3. 3.
    J.A. Hardy, G.A. Higgins, Science 256, 184 (1992).PubMedGoogle Scholar
  4. 4.
    M. Bucciantini, E. Giannoni, F. Chiti, F. Baroni, L. Formigli, J. Zurdo, N. Taffei, G. Ramponi, C.M. Dobson, M. Stefani, Nature 416, (2002), 507.Google Scholar
  5. 5.
    C.E. MacPhee, C.M. Dobson, J. Am. Chem. Soc. 122, 12707 (2000).CrossRefGoogle Scholar
  6. 6.
    C. Veerman, H. Baptist, L.M.C. Sagis, E. van der Linden, J. Agric. Food Chem. 51, 3880 (2003).PubMedGoogle Scholar
  7. 7.
    S.E. Radford, C.M. Dobson, Cell 97, 291 (1999).CrossRefPubMedGoogle Scholar
  8. 8.
    M.R.H. Krebs, E.H.C. Bromley, S.S. Rogers, A.M. Donald, Biophys. J. 88, 2013 (2005).CrossRefPubMedGoogle Scholar
  9. 9.
    C.M. Dobson, Methods 34, 4 (2004).CrossRefPubMedGoogle Scholar
  10. 10.
    J.C. Rochet, P.T. Lansbury jr., Curr. Opin. Struct. Biol. 10, 60 (2000).CrossRefPubMedGoogle Scholar
  11. 11.
    N.P. Cheremisinoff, Handbook of Polymer Science and Technology, Vol. 1: Synthesis and Properties (Dekker, 1989).Google Scholar
  12. 12.
    H. Kramer, M. Deggelmann, C. Graf, M. Hagenbtichle, C. Johner, R. Weber, Macromolecules 25, 4325 (1992).CrossRefGoogle Scholar
  13. 13.
    V.J. Morris, A.R. Foweraker, B.R. Jennings, Adv. Mol. Relax. Interact. Process. 12, 211 (1978).Google Scholar
  14. 14.
    J.G. Elias, D. Eden, Macromolecules 14, 410 (1981).Google Scholar
  15. 15.
    J. Newman, H.L. Swinney, Biopolymers 15, 301 (1976).CrossRefPubMedGoogle Scholar
  16. 16.
    F. Mantegazza, T. Bellini, M. Buscaglia, V. Degiorgio, D.A. Saville, J. Chem. Phys. 113, 6984 (2000).Google Scholar
  17. 17.
    B.M.I. van der Zande, G.J.M. Koper, H.N.W. Lekkerkerker, J. Phys. Chem. B 103, 5754 (1999).CrossRefGoogle Scholar
  18. 18.
    P.A. Cirkel, G.J.M. Koper, Langmuir 14, 7095 (1998).CrossRefGoogle Scholar
  19. 19.
    S.S. Rogers, P. Venema, L.M.C. Sagis, E. van der Linden, A.M. Donald, Macromolecules 38, 2948 (2005).Google Scholar
  20. 20.
    W.S. Gosal, A.H. Clark, P.D.A. Pudney, S.B. Ross-Murphy, Langmuir 18, 7174 (2002).CrossRefGoogle Scholar
  21. 21.
    E.H.C. Bromley, M.R.H. Krebs, A.M. Donald, Faraday Discuss. 128 (2005).Google Scholar
  22. 22.
    L.N. Arnaudov, R. de Vries, H. Ippel, C.P.M. van Mierlo, Biomacromolecules 4, 1614 (2003).CrossRefPubMedGoogle Scholar
  23. 23.
    L.M.C. Sagis, C. Veerman, E. van der Linden, Langmuir 20, 924 (2004).CrossRefPubMedGoogle Scholar
  24. 24.
    P. Aymard, T. Nicolai, D. Durrand, Macromolecules 32, 2542 (1999).CrossRefGoogle Scholar
  25. 25.
    R.K. Cannan, A.H. Palmer, A.C. Kibrick, J. Biol. Chem. 142, 803 (1941).Google Scholar
  26. 26.
    M. Mandel, Mol. Phys. 4, 489 (1961).Google Scholar
  27. 27.
    F. Oosawa, Biopolymers 9, 677 (1970).CrossRefGoogle Scholar
  28. 28.
    G.S. Manning, Biophys. Chem. 9, 65 (1978).CrossRefPubMedGoogle Scholar
  29. 29.
    M. Fixman, Macromolecules 13, 711 (1980).CrossRefGoogle Scholar
  30. 30.
    G.S. Manning, J. Chem. Phys. 90, 5704 (1989).CrossRefGoogle Scholar
  31. 31.
    M. Mandel, T. Odijk, Annu. Rev. Phys. Chem. 35, 75 (1984).CrossRefGoogle Scholar
  32. 32.
    U. Mohanty, Y. Zhao, Biopolymers 38, 377 (1996).CrossRefPubMedGoogle Scholar
  33. 33.
    E. Fredericq, C. Houssier, Electric Dichroism and Electric Birefringence (Oxford University Press, 1973). Google Scholar
  34. 34.
    M. Tricot, C. Houssier, Macromolecules 15, 854 (1982).CrossRefGoogle Scholar
  35. 35.
    H. Beno\^ıt, C. R. Acad. Sci. Paris 228, 1716 (1949).Google Scholar
  36. 36.
    H. Beno\^ıt, Ann. Phys. (Paris) 6, 561 (1951).Google Scholar
  37. 37.
    C.T. O'Konski, B.H. Zimm, Science 111, 113 (1950).PubMedGoogle Scholar
  38. 38.
    M. Doi, S.F. Edwards, Polymer Dynamics (Oxford University Press, 1986).Google Scholar
  39. 39.
    R. Pecora, M.A. Tracy, Annu. Rev. Phys. Chem. 43, 525 (1992).CrossRefGoogle Scholar
  40. 40.
    J. Riseman, J.G. Kirkwood, J. Chem. Phys. 18, 512 (1950).Google Scholar
  41. 41.
    J.G. Kirkwood, P.L. Auer, J. Chem. Phys. 19, 281 (1951).CrossRefGoogle Scholar
  42. 42.
    S. Broersma, J. Chem. Phys 32, 1626 (1960).CrossRefGoogle Scholar
  43. 43.
    M.M. Tirado, G. de la Torre, J. Chem. Phys. 73, 1986 (1980).CrossRefGoogle Scholar
  44. 44.
    M.A. Tracy, R. Pecora, Macromolecules 25, 337 (1992).Google Scholar
  45. 45.
    K.M. Zero, R. Pecora, Macromolecules 15, 87 (1982).Google Scholar
  46. 46.
    C. Holm, M. Rehahn, W. Oppermann, M. Ballauff, Adv. Polym. Sci. 166, 1 (2004).Google Scholar
  47. 47.
    D.J. Winzor, Anal. Biochem. 325, 1 (2004).CrossRefPubMedGoogle Scholar
  48. 48.
    C.E. Felder, S.A. Botti, L. Lifson, I. Silman, J.L. Sussman, J. Mol. Graph. Model. 15, 318 (1997).CrossRefPubMedGoogle Scholar
  49. 49.
    J.D. Ferry, J.L. Oncley, J. Am. Chem. Soc. 63, 272 (1941).Google Scholar
  50. 50.
    S. Brownlow, J.H.M. Cabral, R. Cooper, D.R. Flower, S.J. Yewdall, I. Polikarpov, A.C.T. North, L. Sawyer, Structure 5, 481 (1997).CrossRefPubMedGoogle Scholar
  51. 51.
    D. Hamada, C.M. Dobson, Protein Sci. 11, 2417 (2002).CrossRefPubMedGoogle Scholar
  52. 52.
    D.M. Walsh, D.M. Hartley, Y. Kusumoto, Y. Fezoui, M.M. Condron, A. Lomakin, G.B. Benedek, D.J. Selkoe, D.B. Teplow, J. Biol. Chem. 274, 25945 (1999).CrossRefPubMedGoogle Scholar
  53. 53.
    H.A. Lashuel, D.M. Hartley, B.M. Petre, J.S. Wall, M.N. Simon, T. Walz, P.T. Lansbury, J. Mol. Biol. 332, 795 (2003).CrossRefPubMedGoogle Scholar
  54. 54.
    W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in C, 2nd ed. (Cambridge University Press, 1993).Google Scholar
  55. 55.
    S.W. Provencher, Comput. Phys. Commun. 27, 229 (1982).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  • S. S. Rogers
    • 1
  • P. Venema
    • 2
  • J. P. M. van der Ploeg
    • 3
  • L. M. C. Sagis
    • 2
  • A. M. Donald
    • 1
  • E. van der Linden
    • 2
  1. 1.Department of PhysicsCambridge UniversityCambridgeUK
  2. 2.Laboratory of Food PhysicsWageningen UniversityWageningenThe Netherlands
  3. 3.Leiden Institute of ChemistryLeiden UniversityLeidenThe Netherlands

Personalised recommendations