Advertisement

The European Physical Journal E

, Volume 18, Issue 2, pp 167–182 | Cite as

Segmental order in end-linked polymer networks: A Monte Carlo study

  • J. -U. SommerEmail author
  • K. Saalwächter
Original Article

Abstract.

Segmental order in end-linked monomodal and bimodal polymer networks is investigated by means of bond-fluctuation Monte Carlo simulations. The tensor order parameter, which is a central observable in NMR experiments, is not uniquely related to simple vectorial order. The relaxation of NMR-detected tensorial interactions towards their finite long-time limit is best described by a power law and occurs over much longer time scales than the relaxation of vectorial order. The well-known prediction for the segmental order of Gaussian chains as a simple function of the segment number between constraints is not straightforwardly obeyed, neither in dry nor in swollen networks. Excluded-volume interactions tend to significantly reduce the tensorial order, as is clearly observed in single-chain simulations. A distribution extends along the chain, where order is increased in a region of 30-40 bonds around the cross-links in networks. The dominating contribution to the order parameter distribution arises from the frozen-in distribution of end-to-end separations. We find strong deviations from the Gamma distribution, which has so far been implicitly used in most NMR works, as it is a straightforward consequence of a Gaussian distribution of end separations. Specifically, we find narrower distributions, as small values of the tensor order parameter are strongly suppressed, most probably as a result of trapped entanglements. The markedly subaffine behavior of the average order parameter and the changes in its distribution on swelling are assigned to orientation processes of strands which compensate for the non-affine local deformation. Our central observations and interpretations are well supported by our previous experimental and theoretical work.

PACS.

61.41.+e Polymers, elastomers, and plastics 61.18.Fs Magnetic resonance techniques; Mössbauer spectroscopy 82.35.Lr Physical properties of polymers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.R.G. Treloar, The Physics of Rubber Elasticity, 2nd edition (Oxford University Press, Oxford, 1967).Google Scholar
  2. 2.
    M. Gottlieb, R.J. Gaylord, Macromolecules 17, 2024 (1984).CrossRefGoogle Scholar
  3. 3.
    J. Bastide, L. Leibler, J. Prost, Macromolecules 23, 1821 (1990).CrossRefGoogle Scholar
  4. 4.
    J. Bastide, S. Candau, The Physical Properties of Polymeric Gels, Chapt. 5: Structure of Gels as Investigated by Means of Static Scattering Techniques (John Wiley, 1996) pp. 143-210.Google Scholar
  5. 5.
    R. Chasset, P. Thirion, Proceedings of the Conference on Physics of Non-Cristalline Solids (North-Holland Publ. & Co., 1965).Google Scholar
  6. 6.
    D.J. Plazek, J. Polym. Sci. A-2 4, 745 (1966).CrossRefGoogle Scholar
  7. 7.
    L.H. Sperling, A. Tobolsky, J. Polym. Sci. A-2 6, 259 (1968).CrossRefGoogle Scholar
  8. 8.
    A. Havranek, Rheol. Acta (Suppl.) 26, 202 (1988).Google Scholar
  9. 9.
    J.-U. Sommer, Beiträge zur Langzeitdynamik von Polymeren Netzwerken, PhD Thesis (TH Merseburg, Merseburg, Germany, 1991).Google Scholar
  10. 10.
    F.T. Wall, J. Chem. Phys. 11, 527 (1943).CrossRefGoogle Scholar
  11. 11.
    P.J. Flory, Proc. R. Soc. London, Ser. A 351, 351 (1976).Google Scholar
  12. 12.
    R.J. Gaylord, J.F. Douglas, Polym. Bull. 18, 347 (1987).CrossRefGoogle Scholar
  13. 13.
    D.J. Read, T.C.B. McLeish, Macromolecules 30, 6376 (1997).CrossRefGoogle Scholar
  14. 14.
    C. Svaneborg, G. Grest, R. Everaers, Phys. Rev. Lett. 93, 257801 (2004).PubMedGoogle Scholar
  15. 15.
    R.T. Deam, S.F. Edwards, Philos. Trans. R. Soc. London A 280, 317 (1976).Google Scholar
  16. 16.
    M. Warner, S. Edwards, J. Phys. A 11, 1649 (1978).Google Scholar
  17. 17.
    K. Schmidt-Rohr, H.W. Spiess, Multidimensional Solid-State NMR and Polymers (Academic Press, London, 1994).Google Scholar
  18. 18.
    J.P. Cohen-Addad, J. Chem. Phys. 60, 2440 (1973).Google Scholar
  19. 19.
    J.P. Cohen-Addad, Prog. NMR Spectrosc. 25, 1 (1993).Google Scholar
  20. 20.
    P. de Gennes, J. Prost, The Physics of Liquid Crystals, Int. Ser. Monogr. Phys., Vol. 83 (Oxford University Press, Oxford, 1995).Google Scholar
  21. 21.
    W. Kuhn, F. Grün, Kolloid Z. 101, 248 (1942).CrossRefGoogle Scholar
  22. 22.
    D.J.R. Taylor, R.F.T. Stepto, R.A. Jones, I.M. Ward, Macromolecules 32, 1978 (1999).Google Scholar
  23. 23.
    M.E. Ries, M.G. Brereton, I.M. Ward, J.I. Cail, R.F.T. Stepto, Macromolecules 35, 5665 (2002).CrossRefGoogle Scholar
  24. 24.
    K. Saalwächter, F. Kleinschmidt, J.-U. Sommer, Macromolecules 37, 8556 (2004).CrossRefGoogle Scholar
  25. 25.
    G.E. Pake, J. Chem. Phys. 16, 327 (1948).CrossRefGoogle Scholar
  26. 26.
    R. Kitamaru, Nuclear Magnetic Resonance: Principles and Theory, Stud. Phys. Theor. Chem., Vol. 72 (Elsevier, Amsterdam, 1990). Google Scholar
  27. 27.
    P.W. Andersen, P.R. Weiss, Rev. Mod. Phys. 25, 269 (1953).CrossRefGoogle Scholar
  28. 28.
    K. Binder, A. Young, Rev. Mod. Phys. 58, 801 (1986).CrossRefGoogle Scholar
  29. 29.
    K. Saalwächter, J. Chem. Phys. 120, 454 (2004).PubMedGoogle Scholar
  30. 30.
    E. Fischer, F. Grinberg, R. Kimmich, S. Hafner, J. Chem. Phys. 109, 846 (1998).CrossRefGoogle Scholar
  31. 31.
    R. Fechete, D.E. Demco, B. Blümich, J. Chem. Phys. 118, 2411 (2003).CrossRefGoogle Scholar
  32. 32.
    J.-U. Sommer, G. Heinrich, E. Straube, Colloid Polym. Sci. 268, 148 (1990).Google Scholar
  33. 33.
    J. Cohen-Addad, M. Domard, J. Herz, J. Chem. Phys. 76, 2744 (1982).Google Scholar
  34. 34.
    I. Carmesin, K. Kremer, Macromolecules 21, 2819 (1988).CrossRefGoogle Scholar
  35. 35.
    H. Trautenberg, T. Hölzl, D. Göritz, Comp. Theor. Polym. Sci. 6, 135 (1996).Google Scholar
  36. 36.
    W. Paul, K. Binder, K. Kremer, D.W. Heermann, Macromolecules 24, 6332 (1991).CrossRefGoogle Scholar
  37. 37.
    J.-U. Sommer, S. Lay, Macromolecules 35, 9832 (2002).CrossRefGoogle Scholar
  38. 38.
    W. Paul, K. Binder, D. Heermann, K. Kremer, J. Phys. II 1, 37 (1991).Google Scholar
  39. 39.
    M. Tanaka, K. Iwata, N. Kuzuu, Comp. Theor. Polym. Sci. 10, 299 (2000).CrossRefGoogle Scholar
  40. 40.
    P.J. Flory, J. Rehner, J. Chem. Phys. 11, 521 (1943).CrossRefGoogle Scholar
  41. 41.
    J.-U. Sommer, J. Chem. Phys. 95, 1316 (1991).CrossRefGoogle Scholar
  42. 42.
    S. Lay, J.-U. Sommer, A. Blumen, J. Chem. Phys. 110, 12173 (1999).CrossRefGoogle Scholar
  43. 43.
    F.T. Wall, P.J. Flory, J. Chem. Phys. 19, 1435 (1951).CrossRefGoogle Scholar
  44. 44.
    K. Saalwächter, P. Ziegler, O. Spyckerelle, B. Haidar, A. Vidal, J.-U. Sommer, J. Chem. Phys. 119, 3468 (2003).Google Scholar
  45. 45.
    J.P. Cohen-Addad, M. Domard, J. Herz, J. Chem. Phys. 76, 2744 (1982).CrossRefGoogle Scholar
  46. 46.
    J.P. Cohen-Addad, M. Domard, G. Lorentz, J. Herz, J. Phys. (Paris) 45, 575 (1984).Google Scholar
  47. 47.
    J.P. Cohen-Addad, Macromolecules 22, 147 (1989).CrossRefGoogle Scholar
  48. 48.
    P. Sotta, C. Fülber, D.E. Demco, B. Blümich, H.W. Spiess, Macromolecules 29, 6222 (1996).CrossRefGoogle Scholar
  49. 49.
    M. Knörgen, H. Menge, G. Hempel, H. Schneider, M. Ries, Polymer 43, 4091 (2002).CrossRefGoogle Scholar
  50. 50.
    M.G. Brereton, Macromolecules 22, 3667 (1989).CrossRefGoogle Scholar
  51. 51.
    J.-U. Sommer, J. Chem. Phys. 97, 5777 (1992).CrossRefGoogle Scholar
  52. 52.
    R. Everaers, S. Sukumaran, G. Grest, C. Svaneborg, A. Sivasubramanian, K. Kremer, Science 303, 823 (2004).CrossRefPubMedGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institut de Chimie des Surfaces et Interfaces (CNRS)Mulhouse CedexFrance
  2. 2.Institut für Makromolekulare ChemieUniversität FreiburgFreiburgGermany

Personalised recommendations