The European Physical Journal E

, Volume 18, Issue 1, pp 113–121 | Cite as

Frustration between syn- and anticlinicity in mixtures of chiral and non-chiral tilted smectic-C-type liquid crystals

Original Article

Abstract.

We study the effects of mixing ferroelectric and antiferroelectric liquid-crystal compounds (FLCs and AFLCs) when the former are strictly synclinic and the latter strictly anticlinic, i.e. one mixture component exhibits only SmC* and the other only SmC a* as tilted phase. Three different paths between syn- and anticlinicity were detected: transition directly between SmC* and SmC a*, transition via the SmCβ* and SmCγ* subphases, or by “escaping” the clinicity frustration by reducing the tilt to zero, i.e. the SmA* phase is extended downwards in temperature, separating SmC* from SmC a* in the phase diagram. The most common path is the one via the subphases, demonstrating that these phases appear as a result of frustration between syn- and anticlinic and, consequently, between syn- and antipolar order. For assessing the role of chirality, we also replaced the FLC with non-chiral synclinics. With one of the AFLCs, the route via supbhases was detected even in this case, suggesting that chirality --although necessary-- does not have quite the importance that has previously been attributed to the appearance of the subphases. The path chosen in the mixture study seemed to be determined mainly by the synclinic component, the subphase induction occurring only when the SmA*-SmC* transition was second order.

PACS.

61.30.-v Liquids crystals 77.80.-e Ferroelectricity and antiferroelectricity 64.60.-i General studies of phase transitions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.T. Lagerwall, Ferroelectric and Antiferroelectric Liquid Crystals (Wiley-VCH, Weinheim, 1999).Google Scholar
  2. 2.
    J.P.F. Lagerwall, F. Giesselmann, A. Saipa, R. Dabrowski, Liq. Cryst. 31, 1175 (2004).CrossRefGoogle Scholar
  3. 3.
    M. Hamaneh, P. Taylor, Phys. Rev. Lett. 93, 167801 (2004).CrossRefPubMedGoogle Scholar
  4. 4.
    A. Emelyanenko, M. Osipov, Phys. Rev. E 68, 051703 (2003).CrossRefGoogle Scholar
  5. 5.
    M. Cepic, B. Zeks, Phys. Rev. Lett. 87, 085501 (2001).CrossRefPubMedGoogle Scholar
  6. 6.
    A. Chandani, Y. Ouchi, H. Takezoe, A. Fukuda, Jpn. J. Appl. Phys. 2 28, L1261 (1989).Google Scholar
  7. 7.
    J.P.F. Lagerwall, P. Rudquist, S.T. Lagerwall, F. Giesselmann, Liq. Cryst. 30, 399 (2003).CrossRefGoogle Scholar
  8. 8.
    R. Dabrowski, Ferroelectrics 243, 1 (2000).Google Scholar
  9. 9.
    J. Gasowska, R. Dabrowski, W. Drzewinski, M. Filipowicz, J. Przedmojski, K. Kenig, Ferroelectrics 309, 83 (2004).CrossRefGoogle Scholar
  10. 10.
    T. Isozaki, T. Fujikawa, H. Takezoe, A. Fukuda, T. Hagiwara, Y. Suzuki, I. Kawamura, Jpn. J. Appl. Phys. 2 31, L1435 (1992).Google Scholar
  11. 11.
    T. Akizuki, K. Miyachi, Y. Takanishi, K. Ishikawa, H. Takezoe, A. Fukuda, Jpn. J. Appl. Phys. 1 38, 4832 (1999).CrossRefGoogle Scholar
  12. 12.
    M. Osipov, A. Fukuda, H. Hakoi, Mol. Cryst. Liq. Cryst. 402, 245 (2003).Google Scholar
  13. 13.
    P.M. Johnson, D.A. Olson, S. Pankratz, H.T. Nguyen, J.W. Goodby, M. Hird, C.C. Huang, Phys. Rev. Lett. 84, 4870 (2000).CrossRefPubMedGoogle Scholar
  14. 14.
    P. Mach, R. Pindak, A.M. Levelut, P. Barois, H.T. Nguyen, C.C. Huang, L. Furenlid, Phys. Rev. Lett. 81, 1015 (1998).CrossRefGoogle Scholar
  15. 15.
    A. Cady, J.A. Pitney, R. Pindak, L.S. Matkin, S.J. Watson, H.F. Gleeson, P. Cluzeau, P. Barois, A.M. Levelut, W. Caliebe, J. Goodby, M. Hird, C.C. Huang, Phys. Rev. E 64, 050702 (2001).CrossRefGoogle Scholar
  16. 16.
    E. Gorecka, D. Pociecha, M. Cepic, B. Zeks, R. Dabrowski, Phys. Rev. E 65, 061703 (2002).CrossRefGoogle Scholar
  17. 17.
    M. Cepic, E. Gorecka, D. Pociecha, B. Zeks, H. Nguyen, J. Chem. Phys. 117, 1817 (2002).CrossRefGoogle Scholar
  18. 18.
    J.P.F. Lagerwall, F. Giesselmann, C. Selbmann, S. Rauch, G. Heppke, J. Chem. Phys. 122, 144906 (2005).CrossRefPubMedGoogle Scholar
  19. 19.
    T. Isozaki, T. Fujikawa, H. Takezoe, A. Fukuda, T. Hagiwara, Y. Suzuki, I. Kawamura, Phys. Rev. B 48, 13439 (1993). CrossRefGoogle Scholar
  20. 20.
    A. Fukuda, Y. Takanishi, T. Isozaki, K. Ishikawa, H. Takezoe, J. Mater. Chem. 4, 997 (1994).CrossRefGoogle Scholar
  21. 21.
    S.-S. Seomun, T. Gouda, Y. Takanishi, K. Ishikawa, H. Takezoe, Liq. Cryst. 26, 151 (1999).CrossRefGoogle Scholar
  22. 22.
    E. Gorecka, D. Pociecha, M. Glogarova, J. Mieczkowski, Phys. Rev. Lett. 81, 2946 (1998).CrossRefGoogle Scholar
  23. 23.
    D. Pociecha, M. Glogarova, E. Gorecka, J. Mieczkowski, Phys. Rev. E 61, 6674 (2000).CrossRefGoogle Scholar
  24. 24.
    F. Giesselmann, A. Langhoff, P. Zugenmaier, Liq. Cryst. 23, 927 (1997).CrossRefGoogle Scholar
  25. 25.
    K. Miyasato, S. Abe, H. Takezoe, A. Fukuda, Jpn. J. Appl. Phys. 2 22, L661 (1983).Google Scholar
  26. 26.
    J.P.F. Lagerwall, F. Giesselmann, E. Körblova, D.M. Walba, J.M. Oton, D. Coleman, R. Shao, N.A. Clark, The peculiar optic, dielectric and x-ray diffraction properties of a fluorinated de vries asymmetric-diffuse-cone-model ferroelectric liquid crystal, to be published in Liq. Cryst. (2005).Google Scholar
  27. 27.
    A. de Vries, J. Chem. Phys. 71, 25 (1979).CrossRefGoogle Scholar
  28. 28.
    A. de Vries, Mol. Cryst. Liq. Cryst. Lett. 49, 179 (1979).Google Scholar
  29. 29.
    A. de Vries, A. Ekachai, N. Spielberg, Mol. Cryst. Liq. Cryst. Lett. 49, 143 (1979).Google Scholar
  30. 30.
    J. Schacht, H. Baethge, F. Giesselmann, P. Zugenmaier, J. Mater. Chem. 8, 603 (1998).Google Scholar
  31. 31.
    S. Dumrongrattana, C.C. Huang, G. Nounesis, S.C. Lien, J.M. Viner, Phys. Rev. A 34, 5010 (1986).CrossRefPubMedGoogle Scholar
  32. 32.
    H. Keymeulen, W. de Jeu, J. Slattery, M. Veum, Eur. Phys. J. E 9, 443 (2002).CrossRefPubMedGoogle Scholar
  33. 33.
    T. Nakai, S. Miyajima, Y. Takanishi, S. Yoshida, A. Fukuda, J. Phys. Chem. B 103, 406 (1999).CrossRefGoogle Scholar
  34. 34.
    T. Matsumoto, A. Fukuda, M. Johno, Y. Motoyama, T. Yui, S.S. Seomun, M. Yamashita, J. Mater. Chem. 9, 2051 (1999).CrossRefGoogle Scholar
  35. 35.
    D.M. Walba, Ferroelectric liquid crystal conglomerates, in Topics in Stereochemistry, Materials-Chirality, Vol. 24, edited by M.M. Green, R.J.M. Nolte, E.W. Meijer, S.E. Denmark (Wiley-VCH, 2003) pp. 457-518.Google Scholar
  36. 36.
    J.P.F. Lagerwall, F. Giesselmann, M.A. Osipov, On the change in helix handedness at transitions between the sm-c* and sm-ca* phases in chiral smectic liquid crystals, to be published in Liq. Cryst. (2005).Google Scholar
  37. 37.
    I. Musevic, M. Skarabot, G. Heppke, H.T. Nguyen, Liq. Cryst. 29, 1565 (2002).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  • J. P. F. Lagerwall
    • 1
  • G. Heppke
    • 2
  • F. Giesselmann
    • 1
  1. 1.Institute of Physical ChemistryUniversity of StuttgartStuttgartGermany
  2. 2.Department of ChemistryTechnical University BerlinBerlinGermany

Personalised recommendations