Advertisement

The European Physical Journal E

, Volume 17, Issue 4, pp 485–491 | Cite as

Different pathways in mechanical unfolding/folding cycle of a single semiflexible polymer

  • N. Yoshinaga
  • K. Yoshikawa
  • T. Ohta
Original Article

Abstract.

Kinetics of conformational change of a semiflexible polymer under mechanical external field were investigated with Langevin dynamics simulations. It is found that a semiflexible polymer exhibits large hysteresis in mechanical folding/unfolding cycle even with a slow operation, whereas in a flexible polymer, the hysteresis almost disappears at a sufficiently slow operation. This suggests that the essential features of the structural transition of a semiflexible polymer should be interpreted at least on a two-dimensional phase space. The appearance of such large hysteresis is discussed in relation to different pathways in the loading and unloading processes. By using a minimal two-variable model, the hysteresis loop is described in terms of different pathways on the transition between two stable states.

PACS.

36.20.-r Macromolecules and polymer molecules 87.15.La Mechanical properties 05.70.Fh Phase transitions: general studies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Svoboda, S.M. Block, Cell 77, 773 (1994).CrossRefPubMedGoogle Scholar
  2. 2.
    C. Bustamante, Z. Bryant, S.B. Smith, Nature 421, 423 (2003).Google Scholar
  3. 3.
    M. Takahashi, K. Yoshikawa, V.V. Vasilevskaya, A.R. Khokhlov, J. Phys. Chem. B 101, 9396 (1997). CrossRefGoogle Scholar
  4. 4.
    H. Noguchi, S. Saito, S. Kidoaki, K. Yoshikawa, Chem. Phys. Lett. 261, 527 (1996).CrossRefGoogle Scholar
  5. 5.
    M. Rief, M. Gautel, F. Oesterhelt, J.M. Frenandez, E. Gaub, Science 276, 1109 (1997).Google Scholar
  6. 6.
    C. Baumann, V. Bloomfield, S. Smith, C. Bustamante, M. Wang, S. Block, Biophys. J. 78, 1965 (2000).PubMedGoogle Scholar
  7. 7.
    Y. Murayama, M. Sano, J. Phys. Soc. Jpn. 70, 345 (2001).CrossRefGoogle Scholar
  8. 8.
    M. Rief, J.M. Fernandez, H.E. Gaub, Phys. Rev. Lett. 81, 4764 (1998).CrossRefGoogle Scholar
  9. 9.
    H. Wada, Y. Murayama, M. Sano, Phys. Rev. Lett. 66, 061912 (2002).Google Scholar
  10. 10.
    I.M. Kulić, H. Schiessel, Phys. Rev. Lett. 92, 228101 (2004).CrossRefPubMedGoogle Scholar
  11. 11.
    D. Marenduzzo, A. Maritan, A. Rosa, F. Seno, Eur. Phys. J. E 15, 83 (2004).CrossRefPubMedGoogle Scholar
  12. 12.
    C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).CrossRefGoogle Scholar
  13. 13.
    G.E. Crooks, J. Stat. Phys. 90, 1481 (1998).CrossRefGoogle Scholar
  14. 14.
    G. Hummer, A. Szabo, Proc. Natl. Acad. Sci. U.S.A. 98, 3658 (2001).CrossRefPubMedGoogle Scholar
  15. 15.
    T. Sakaue, K. Yoshikawa, J. Chem. Phys. 117, 6323 (2002).CrossRefGoogle Scholar
  16. 16.
    R.G. Winkler, J. Chem. Phys. 118, 2919 (2003).CrossRefGoogle Scholar
  17. 17.
    B.Y. Ha, D. Thirumalai, J. Chem. Phys. 102, 9408 (1995).CrossRefGoogle Scholar
  18. 18.
    N. Saito, K. Takahashi, Y. Yasuo, J. Phys. Soc. Jpn. 22, 219 (1967).CrossRefGoogle Scholar
  19. 19.
    K. Yoshikawa, Y. Matsuzawa, J. Am. Chem. Soc. 118, 929 (1996).CrossRefGoogle Scholar
  20. 20.
    P.-C. Li, D.E. Makarov, J. Chem. Phys. 119, 9260 (2003).CrossRefGoogle Scholar
  21. 21.
    A. Halperin, B. Zhulina, Europhys. Lett. 15, 417 (1991).Google Scholar
  22. 22.
    M. Wittkop, D. Göritz, Phys. Rev. E 53, 838 (1996).CrossRefGoogle Scholar
  23. 23.
    A. Halperin, P.M. Goldbart, Phys. Rev. E 61, 565 (2000).CrossRefGoogle Scholar
  24. 24.
    M. Doi, S. Edwards, The Theory of Polymer Dynamics (Clarendon, Oxford, 1986).Google Scholar
  25. 25.
    L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon, London, 1958).Google Scholar
  26. 26.
    D. Bartolo, I. Derényi, A. Adjdari, Phys. Rev. E 65, 051910 (2002).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Physics, Graduate School of SciencesKyoto UniversityKyotoJapan
  2. 2.Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan

Personalised recommendations