The European Physical Journal E

, Volume 17, Issue 4, pp 403–411 | Cite as

Light-induced instabilities driven by competing helical patterns in long-pitch cholesterics

Original Article

Abstract.

We study theoretically the dynamical reorientation phenomena when a long-pitch cholesteric liquid-crystal film with homeotropic alignment is illuminated by a circularly polarized lightwave. In the present case, the natural cholesteric pitch is of the order of (or larger than) the film thickness. The helical cholesteric structure is thus frustrated by the boundary conditions without illumination. However, above a light intensity threshold reorientation occurs and the bifurcation scenario depends strongly on the natural cholesteric pitch. Recalling that a long-pitch cholesteric is achieved in practice by adding a small amount of chiral agents in a nematic liquid crystal, the observed dynamics can be viewed as the result of the competition between intrinsic and extrinsic unidimensional helical patterns. The intrinsic part consists of the helical deformations induced by the chirality of the dopant, whereas the extrinsic part is related to the chirality induced by the optical field through the non-uniform angular momentum transfer of light to a nematic. The all-optical analog in the case of a pure nematic (without chiral dopant), is also discussed.

PACS.

42.70.Df Liquid crystals 42.65.Sf Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd edition (Clarendon Press, Oxford, 1993).Google Scholar
  2. 2.
    W.E.L. Hass, J.E. Adams, Appl. Phys. Lett. 25, 535 (1974).CrossRefGoogle Scholar
  3. 3.
    V.G. Bhide, S.C. Jain, S. Chandra, J. Appl. Phys. 48, 3349 (1977).CrossRefGoogle Scholar
  4. 4.
    G. Abbate, P. Maddalena, L. Marrucci, L. Saetta, A. Ferraiuolo, E. Santamato, Mol. Cryst. Liq. Cryst. 223, 11 (1992).Google Scholar
  5. 5.
    G. Abbate, A. Ferraiuolo, P. Maddalena, L. Marrucci, E. Santamato, Liq. Cryst. 14, 1431 (1993).Google Scholar
  6. 6.
    P. Maddalena, G. Arnone, G. Abbate, L. Marrucci, E. Santamato, Mol. Cryst. Liq. Cryst. 261, 113 (1995).Google Scholar
  7. 7.
    E. Brasselet, T.V. Galstian, Opt. Commun. 200, 241 (2001).CrossRefGoogle Scholar
  8. 8.
    E. Santamato, B. Daino, M. Romagnoli, M. Settembre, Y.R. Shen, Phys. Rev. Lett. 57, 2423 (1986). CrossRefPubMedGoogle Scholar
  9. 9.
    E. Brasselet, T.V. Galstian, L.J. Dubé, D.O. Krimer, L. Kramer, J. Opt. Soc. Am. B 22, 1671 (2005) .CrossRefGoogle Scholar
  10. 10.
    L. Marrucci, G. Abbate, S. Ferraiuolo, P. Maddalena, E. Santamato, Phys. Rev. A 46, 4859 (1992).CrossRefPubMedGoogle Scholar
  11. 11.
    A. Vella, B. Piccirillo, E. Santamato, Phys. Rev. E 65, 031706 (2002).CrossRefGoogle Scholar
  12. 12.
    Refractive indices measured at $20\,^\circ$C and $\lambda=589$ nm from Merck datasheet.Google Scholar
  13. 13.
    G. Cipparrone, D. Duca, C. Versace, C. Umeton, N.V. Tabiryan, Mol. Cryst. Liq. Cryst. Sci. Technol. A 266, 263 (1995).Google Scholar
  14. 14.
    B.Y. Zel’dovich, N. Tabiryan, Zh. Eksp. Teor. Fiz. 82, 1126 (1982) (Sov. Phys. JETP 56, 563 (1982)).Google Scholar
  15. 15.
    D.O. Krimer, G. Demeter, L. Kramer, Mol. Cryst. Liq. Cryst. 421, 117 (2004).CrossRefGoogle Scholar
  16. 16.
    E. Brasselet, T.V. Galstian, Opt. Commun. 186, 291 (2000).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  1. 1.Laboratoire de Physique UMR 5672École Normale Supérieure de LyonLyon Cedex 07France
  2. 2.Physikalisches Institut der Universität BayreuthBayreuthGermany

Personalised recommendations