Advertisement

The European Physical Journal E

, Volume 18, Issue 2, pp 143–148 | Cite as

Qualitative discrepancy between different measures of dynamics in thin polymer films

  • Z. Fakhraai
  • S. Valadkhan
  • J. A. Forrest
Original Article

Abstract.

We have used ellipsometry to measure the initial stages of interface healing in bilayer polystyrene films. We also used ellipsometry to measure the glass transition temperature Tg of the same or identically prepared samples. The results indicate that as the film thickness is decreased, the time constant for the interface healing process increases, while at the same time the measured glass transition temperature in the same samples decreases as the film thickness is decreased. This qualitative difference in the behavior indicates that it is not always possible to make inferences about one probe of polymer dynamics from measurements of another. We propose a reason for this discrepancy based on a previously discussed origin for reduction in the Tg value of thin films.

PACS.

68.35.Fx Diffusion; interface formation 68.35.Ja Surface and interface dynamics and vibrations 82.35.Gh Polymers on surfaces; adhesion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Frick, R. Zorn, H. Buttner (Editors), International Workshop on Dynamics in Confinement, J. Phys. IV 10, Pr7 (2000).Google Scholar
  2. 2.
    G. Reiter, Europhys. Lett. 23, 579 (1993).Google Scholar
  3. 3.
    J.L. Keddie, R.A.L. Jones, R.A. Cory, Europhys. Lett. 27, 59 (1994).Google Scholar
  4. 4.
    J. S. Sharp, J.A. Forrest, Phys. Rev. Lett. 91, 235701 (2003).CrossRefPubMedGoogle Scholar
  5. 5.
    C.J. Ellison, J.M. Torkelson, Nature Mater. 2, 695 (2003).CrossRefGoogle Scholar
  6. 6.
    A.N. Semenov, Phys. Rev. Lett. 80, 1908 (1998).CrossRefGoogle Scholar
  7. 7.
    X. Zheng et. al. Phys. Rev. Lett. 79, 241 (1997).Google Scholar
  8. 8.
    B. Frank, A.P. Gast, T.P. Russell, H.R. Brown, C. Hawker, Macromolecules 29, 6531 (1996).CrossRefGoogle Scholar
  9. 9.
    K.L. Ngai, Eur. Phys. J. E, 8 225 (2002).Google Scholar
  10. 10.
    J.A. Forrest, Eur. Phys. J. E, 8, 261 (2002).Google Scholar
  11. 11.
    R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light (North Holland, Amsterdam, 1987).Google Scholar
  12. 12.
    D.P. Bertsekas, Nonlinear Programming (Athena Scientific, Belmont, Mass., 1999).Google Scholar
  13. 13.
    S. Kawana, R.A.L. Jones, Phys. Rev. E, 63, 021501 (2001). Google Scholar
  14. 14.
    A. Karim, A. Mansour, G.P. Felcher, Phys. Rev. B, 42 6846 (1990).Google Scholar
  15. 15.
    F. Varnik, J. Baschnagel, K. Binder, J. Phys IV 10, 239 (2000).Google Scholar
  16. 16.
    P.G. Bruce (Editor), Solid State Electrochemistry (Cambridge University Press, 1995).Google Scholar
  17. 17.
    G. Strobl, The Physics of Polymers (Springer Verlag, New York, 1997).Google Scholar
  18. 18.
    J.S. Sharp, J.H. Teichroeb, J.A. Forrest, Eur. Phys. J. E 15, 473 (2004).CrossRefPubMedGoogle Scholar
  19. 19.
    Z. Fakhraai, J.A. Forrest, Phys. Rev. Lett. 95, 025701 (2005).CrossRefPubMedGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  • Z. Fakhraai
    • 1
  • S. Valadkhan
    • 2
  • J. A. Forrest
    • 1
  1. 1.Department of Physics and Guelph-Waterloo Physics InstituteUniversity of WaterlooWaterlooCanada
  2. 2.Department of Mechanical EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations