Advertisement

The European Physical Journal E

, Volume 18, Issue 2, pp 133–142 | Cite as

Dielectrophoresis of nanocolloids: A molecular dynamics study

  • E. SalonenEmail author
  • E. Terama
  • I. Vattulainen
  • M. Karttunen
Original Article

Abstract.

Dielectrophoresis (DEP), the motion of polarizable particles in non-uniform electric fields, has become an important tool for the transport, separation, and characterization of microparticles in biomedical and nanoelectronics research. In this article we present, to our knowledge, the first molecular dynamics simulations of DEP of nanometer-sized colloidal particles. We introduce a simplified model for a polarizable nanoparticle, consisting of a large charged macroion and oppositely charged microions, in an explicit solvent. The model is then used to study DEP motion of the particle at different combinations of temperature and electric field strength. In accord with linear response theory, the particle drift velocities are shown to be proportional to the DEP force. Analysis of the colloid DEP mobility shows a clear time dependence, demonstrating the variation of friction under non-equilibrium. The time dependence of the mobility further results in an apparent weak variation of the DEP displacements with temperature.

PACS.

82.20.Wt Computational modeling; simulation 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling 82.70.Dd Colloids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.A. Pohl, J. Appl. Phys. 22, 869 (1951).CrossRefGoogle Scholar
  2. 2.
    H.A. Pohl, J. Appl. Phys. 29, 1182 (1958).CrossRefGoogle Scholar
  3. 3.
    A. Ramos, H. Morgan, N.G. Green, A. Castellanos, J. Phys. D 31, 2338 (1998).CrossRefGoogle Scholar
  4. 4.
    S.W. Lee, R. Bashir, Appl. Phys. Lett. 83, 3833 (2003).CrossRefGoogle Scholar
  5. 5.
    A. Bezryadin, C. Dekker, G. Schmid, Appl. Phys. Lett. 71, 1273 (1997).CrossRefGoogle Scholar
  6. 6.
    L. Zheng, S. Li, J.P. Brody, P.J. Burke, Langmuir 20, 8612 (2004).CrossRefPubMedGoogle Scholar
  7. 7.
    P.A. Smith, C.D. Nordquist, T.N. Jackson, T.S. Mayer, B.R. Martin, J. Mbindyo, T.E. Mallouk, Appl. Phys. Lett. 77, 1399 (2000).CrossRefGoogle Scholar
  8. 8.
    K.D. Hermanson, S.O. Lumsdon, J.P. Williams, E.W. Kaler, O.D. Velev, Science 294, 1082 (2001).CrossRefPubMedGoogle Scholar
  9. 9.
    K. Yamamoto, S. Akita, Y. Nakayama, J. Phys. D 31, L34 (1998).Google Scholar
  10. 10.
    R.H.M. Chan, C.K.M. Fung, W.J. Li, Nanotechnology 15, S672 (2004).Google Scholar
  11. 11.
    M.P. Hughes, Nanotechnology 11, 124 (2000).CrossRefGoogle Scholar
  12. 12.
    P.J. Burke, in Encyclopedia of Nanoscience and Nanotechnology, edited by H.S. Nalwa (American Scientific Publishers, Stevenson Ranch, CA, 2004).Google Scholar
  13. 13.
    G.H. Markx, Y. Huang, X. Zhou, R. Pethig, Microbiology 140, 585 (1994).Google Scholar
  14. 14.
    M. Washizu, S. Suzuki, O. Kurosawa, T. Nishizaka, T. Shinohara, IEEE Trans. Indust. Appl. 30, 835 (1994).CrossRefGoogle Scholar
  15. 15.
    F.F. Becker, X.-B. Wang, Y. Huang, R. Pethig, J. Vykoukal, P.R.C. Gascoyne, J. Phys. D 27, 2659 (1994).CrossRefGoogle Scholar
  16. 16.
    M.P. Hughes, H. Morgan, J. Phys. D 31, 2205 (1998).CrossRefGoogle Scholar
  17. 17.
    H. Morgan, M.P. Hughes, N.G. Green, Biophys. J. 77, 516 (1999).PubMedGoogle Scholar
  18. 18.
    C.-F. Chou, J.O. Tegenfeldt, O. Bakajin, S.S. Chan, E.C. Cox, N. Darnton, T. Duke, R.H. Austin, Biophys. J. 83, 2170 (2002).PubMedGoogle Scholar
  19. 19.
    Y. Huang, S. Joo, M. Duhon, M. Heller, B. Wallace, X. Xu, Anal. Chem. 74, 3362 (2002).CrossRefPubMedGoogle Scholar
  20. 20.
    D.S. Gray, J.L. Tan, J. Voldman, C.S. Chen, Biosens. Bioelectr. 19, 1765 (2004).CrossRefGoogle Scholar
  21. 21.
    J.P. Huang, M. Karttunen, K.W. Yu, L. Dong, Phys. Rev. E 67, 021403 (2003).CrossRefGoogle Scholar
  22. 22.
    J.P. Huang, M. Karttunen, K.W. Yu, L. Dong, G.Q. Gu, Phys. Rev. E 69, 051402 (2004).CrossRefGoogle Scholar
  23. 23.
    M. Tanaka, A.Y. Grosberg, Eur. Phys. J. E 7, 371 (2002).Google Scholar
  24. 24.
    I.-C. Yeh, G. Hummer, Biophys. J. 86, 681 (2004).PubMedGoogle Scholar
  25. 25.
    P. Linse, V. Lobaskin, Phys. Rev. Lett. 83, 4208 (1999).CrossRefGoogle Scholar
  26. 26.
    R. Messina, C. Holm, K. Kremer, Phys. Rev. Lett. 85, 872 (2000).CrossRefPubMedGoogle Scholar
  27. 27.
    M. Patra, M. Patriarca, M. Karttunen, Phys. Rev. E 67, 031402 (2003).CrossRefGoogle Scholar
  28. 28.
    D.J. Klingenberg, F. van Swol, C.F. Zukovski, J. Chem. Phys. 91, 7888 (1989).Google Scholar
  29. 29.
    R. Tao, Q. Jiang, Phys. Rev. Lett. 73, 205 (1994).CrossRefPubMedGoogle Scholar
  30. 30.
    A.P. Lyubartsev, M. Karttunen, I. Vattulainen, A. Laaksonen, Soft Mater. 1, 121 (2003).Google Scholar
  31. 31.
    M. Karttunen, I. Vattulainen, A. Lukkarinen (Editor), Novel Methods in Soft Matter Simulations, Lect. Notes Phys., Vol. 640 (Springer Verlag, Berlin, 2004).Google Scholar
  32. 32.
    I. Vattulainen, M. Karttunen, in Handbook of Theoretical and Computational Nanotechnology, edited by M. Rieth, W. Schommers (American Scientific Publishers, Stevenson Ranch, CA, 2005).Google Scholar
  33. 33.
    T. Murtola, E. Falck, M. Patra, M. Karttunen, I. Vattulainen, J. Chem. Phys. 121, 9156 (2004).PubMedGoogle Scholar
  34. 34.
    J.D. Weeks, D. Chandler, H.C. Andersen, J. Chem. Phys. 54, 5237 (1971).CrossRefGoogle Scholar
  35. 35.
    B.B. Laird, J.L. Skinner, J. Chem. Phys. 90, 3274 (1989).CrossRefGoogle Scholar
  36. 36.
    R. Messina, J. Chem. Phys. 117, 11062 (2002).CrossRefGoogle Scholar
  37. 37.
    H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984).CrossRefGoogle Scholar
  38. 38.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1989).Google Scholar
  39. 39.
    B. Dünweg, K. Kremer, J. Chem. Phys. 99, 6983 (1993). CrossRefGoogle Scholar
  40. 40.
    J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, 2nd ed. (Academic Press, San Diego, 1986).Google Scholar
  41. 41.
    M. Bishop, J.P.J. Michels, Chem. Phys. Lett. 94, 209 (1983).CrossRefGoogle Scholar
  42. 42.
    T. Scopigno, R. Di Leonardo, L. Comez, A.Q.R. Baron, D. Fioretto, G. Ruocco, Phys. Rev. Lett. 94, 155301 (2005).PubMedGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  • E. Salonen
    • 1
    Email author
  • E. Terama
    • 1
  • I. Vattulainen
    • 1
    • 2
  • M. Karttunen
    • 3
  1. 1.Biological Physics and Soft Matter Group, Laboratory of Physics and Helsinki Institute of PhysicsHelsinki University of TechnologyFinland
  2. 2.Memphys-Center of Biomembrane Physics, Physics DepartmentUniversity of Southern DenmarkOdense MDenmark
  3. 3.Biophysics and Statistical Mechanics Group, Laboratory of Computational EngineeringHelsinki University of TechnologyFinland

Personalised recommendations