Advertisement

The European Physical Journal E

, Volume 16, Issue 4, pp 389–400 | Cite as

Direct observation of counterion organization in F-actin polyelectrolyte bundles

  • T. E. Angelini
  • H. Liang
  • W. Wriggers
  • G. C. L. Wong
Article

Abstract.

Attractions between like-charged polyelectrolytes have been observed in a variety of systems (W.M. Gelbart, R.F. Bruinsma, P.A. Pincus, V.A. Parsegian, Phys. Today 53, September issue, 38 (2000)). Recent biological examples include DNA, filamentous viruses, and F-actin. Theoretical investigations on idealized systems indicate that counterion correlations play a central role, but no experiments that specifically probe such correlations have been performed. Using synchrotron X-ray diffraction, we have directly observed the organization of multivalent ions on cytoskeletal filamentous actin (a well-defined biological polyelectrolyte) and found an unanticipated symmetry-breaking collective counterion mechanism for generating attractions. Surprisingly, the counterions do not form a lattice that simply follows actin’s helical symmetry; rather, the counterions organize into “frozen” ripples parallel to the actin filaments and form structures reminiscent of charge density waves. Moreover, these 1D counterion charge density waves form a coupled mode with twist deformations of the oppositely charged actin filaments. This counterion organization is not sensitive to thermal fluctuations in temperature range accessible to protein-based polyelectrolyte systems. Moreover, the counterion density waves are “pinned” to the spatial periodicity of charges on the actin filament even if the global filament charge density is varied, indicating the importance of charge periodicity on the polyelectrolyte substrate.

PACS.

82.35.Rs Polyelectrolytes 82.35.Pq Biopolymers, biopolymerization 87.16.Ka Filaments, microtubules, their networks, and supramolecular assemblies 87.64.Bx Electron, neutron and X-ray diffraction and scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Israelachvili, Intermolecular and Surface Forces, 2 ed. (Academic Press, London, 1992).Google Scholar
  2. 2.
    D.R. Evans, H. Wennerstrom, The Colloidal Domain, 2 ed. (Wiley, New York, 1999).Google Scholar
  3. 3.
    P. Nelson, Biological Physics (Freeman, New York, 2004).Google Scholar
  4. 4.
    B.V. Derjaguin, L. Landau, Acta Physicochim. (URSS) 14, 633 (1941).Google Scholar
  5. 5.
    E.J. Verwey, J.T.G. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948).Google Scholar
  6. 6.
    M. LeBret, B.H. Zimm, Biopolymers 23, 287 (1984).Google Scholar
  7. 7.
    L. Guldbrand, L. Nilsson, L. Nordenskiöld, J. Chem. Phys. 85, 6686 (1986).ADSGoogle Scholar
  8. 8.
    C.F. Anderson, M.T. Record jr., Annu. Rev. Biophys. Chem. 19, 423 (1990).Google Scholar
  9. 9.
    G. Lamm, L. Wong, G.R. Pack, Biopolymers 34, 227 (1994).Google Scholar
  10. 10.
    L.G. Nilsson, L. Guldbrand, L. Nordenskiöld, Mol. Physiol. 72, 177 (1991).ADSGoogle Scholar
  11. 11.
    J.G. Kirkwood, J.B. Shumaker, Proc. Natl. Acad. Sci. U.S.A. 38, 863 (1952).ADSGoogle Scholar
  12. 12.
    F. Oosawa, Biopolymers 6, 1688 (1968).Google Scholar
  13. 13.
    F. Oosawa, Polyelectrolytes (Marcel Dekker, New York, 1971).Google Scholar
  14. 14.
    J. Ray, G.S. Manning, Langmuir 10, 2450 (1994).Google Scholar
  15. 15.
    A.P. Lyubartsev, L. Nordenskiöld, J. Phys. Chem. 99, 10373 (1995).Google Scholar
  16. 16.
    A.P. Lyubartsev, L. Nordenskiöld, J. Phys. Chem. B 101, 4335 (1997).Google Scholar
  17. 17.
    I. Rouzina, V.A. Bloomfield, J. Phys. Chem. 100, 9977 (1996).Google Scholar
  18. 18.
    I. Rouzina, V.A. Bloomfield, Biophys. Chem. 64, 139 (1997).Google Scholar
  19. 19.
    N. Grønbech-Jensen, R.J. Mashl, R.F. Bruinsma, W.M. Gelbart, Phys. Rev. Lett. 78, 2477 (1997).ADSGoogle Scholar
  20. 20.
    B.-Y. Ha, A.J. Liu, Phys. Rev. Lett. 79, 1289 (1997).ADSGoogle Scholar
  21. 21.
    B.-Y. Ha, A.J. Liu, Phys. Rev. Lett. 81, 1011 (1998).Google Scholar
  22. 22.
    R.M. Nyquist, B.-Y. Ha, A.J. Liu, Macromolecules 32, 3481 (1999).Google Scholar
  23. 23.
    R. Podgornik, V.A. Parsegian, Phys. Rev. Lett. 80, 1560 (1998).Google Scholar
  24. 24.
    F.J. Solis, M. Olvera de la Cruz, Phys. Rev. E 60, 4496 (1999).ADSGoogle Scholar
  25. 25.
    A.P. Lyubartsev, J.X. Tang, P.A. Janmey, L. Nordenskiöld, Phys. Rev. Lett. 81, 5465 (1998).Google Scholar
  26. 26.
    B.I. Shklovskii, Phys. Rev. Lett. 82, 3268 (1999).ADSGoogle Scholar
  27. 27.
    B.I. Shklovskii, Phys. Rev. E 60, 5802 (1999).ADSGoogle Scholar
  28. 28.
    V.I. Perel, B.I. Shklovskii, Physica A 274, 446 (1999).ADSGoogle Scholar
  29. 29.
    T.T. Nguyen, A.Y. Grosberg, B.I. Shklovskii, Phys. Rev. Lett. 85, 1568 (2000).ADSGoogle Scholar
  30. 30.
    T.T. Nguyen, A.Y. Grosberg, B.I. Shklovskii, J. Chem. Phys. 113, 1110 (2000).CrossRefADSGoogle Scholar
  31. 31.
    T.T. Nguyen, I. Rouzina, B.I. Shklovskii, J. Chem. Phys. 112, 2562 (2000).ADSGoogle Scholar
  32. 32.
    T.T. Nguyen, B.I. Shklovskii, Phys. Rev. E 64, 041407 (2001).ADSGoogle Scholar
  33. 33.
    T.T. Nguyen, B.I. Shklovskii, Physica A 293, 324 (2001).ADSGoogle Scholar
  34. 34.
    A.A. Kornyshev, S. Leikin, Phys. Rev. Lett. 82, 4138 (1999).ADSGoogle Scholar
  35. 35.
    T.G. Dewey, Biopolymers 29, 1793 (1990).Google Scholar
  36. 36.
    E. Rajasekaran, B. Jayaram, Biopolymers 34, 443 (1994).Google Scholar
  37. 37.
    K. Sharp, Biopolymers 36, 227 (1995).Google Scholar
  38. 38.
    K.A. Sharp, R.A. Friedman, V. Misra, J. Hecht, B. Honig, Biopolymers 36, 245 (1995).Google Scholar
  39. 39.
    M.J. Stevens, Phys. Rev. Lett. 82, 101 (1999).ADSGoogle Scholar
  40. 40.
    M.C. Barbosa, M. Deserno, C.A. Holm, Europhys. Lett. 52, 80 (2000).ADSGoogle Scholar
  41. 41.
    J.J. Arenzon, J.F. Stilck, Y. Levin, Eur. Phys. J. B 12, 79 (1999).Google Scholar
  42. 42.
    J.J. Arenzon, Y. Levin, J.F. Stilck, Physica A 283, 1 (2000).ADSGoogle Scholar
  43. 43.
    A. Diehl, H.A. Carmona, Y. Levin, Phys. Rev. E 64, 011804 (2001).ADSGoogle Scholar
  44. 44.
    M. Deserno, A. Arnold, C. Holm, Macromolecules 36, 249 (2003).Google Scholar
  45. 45.
    H. Schiessel, P. Pincus, Macromolecules 31, 7953 (1998).Google Scholar
  46. 46.
    P.L. Hansen, D. Svensek, V.A. Parsegian, R. Podgornik, Phys. Rev. E 60, 1956 (1999).ADSGoogle Scholar
  47. 47.
    R. Podgornik, P.L. Hansen, V.A. Parsegian, J. Chem. Phys. 113, 9343 (2000).ADSGoogle Scholar
  48. 48.
    P.L. Hansen, R. Podgornik, V.A. Parsegian, Phys. Rev. E 64, 021907 (2001).ADSGoogle Scholar
  49. 49.
    R. Golestanian, T.B. Liverpool, Phys. Rev. E 66, 051802 (2002).ADSGoogle Scholar
  50. 50.
    R. Golestanian, R. Kardar, T.B. Liverpool, Phys. Rev. Lett. 82, 4456 (1999).CrossRefADSGoogle Scholar
  51. 51.
    I. Borukhov, K.C. Lee, R.F. Bruinsma, W.M. Gelbart, A.J. Liu, M.J. Stevens, J. Chem. Phys. 117, 462 (2002).ADSGoogle Scholar
  52. 52.
    I. Borukhov, R.F. Bruinsma, W.M. Gelbart, A.J. Liu, Phys. Rev. Lett. 86, 2182 (2001).ADSGoogle Scholar
  53. 53.
    A.Y. Grosberg, T.T. Nguyen, B.I. Shklovskii, Rev. Mod. Phys. 74, 329 (2002).CrossRefADSGoogle Scholar
  54. 54.
    Y. Levin, Rep. Prog. Phys 65, 1577 (2002).ADSGoogle Scholar
  55. 55.
    W.M. Gelbart, R.F. Bruinsma, P.A. Pincus, V.A. Parsegian, Phys. Today 53, September issue, 38 (2000).Google Scholar
  56. 56.
    C.P.K. Holm, R. Podgornik, Electrostatic Effects in Soft Matter and Biophysics (Dorcrecht, Kluwer, 2001).Google Scholar
  57. 57.
    G.S. Manning, Q. Rev. Biophys. 2, 179 (1978).CrossRefGoogle Scholar
  58. 58.
    R.W. Wilson, V.A. Bloomfield, Biochemistry 18, 2192 (1979).Google Scholar
  59. 59.
    V.A. Bloomfield, R.W. Wilson, D.C. Rau, Biophys. Chem. 11, 339 (1980).Google Scholar
  60. 60.
    J. Widom, R.L. Baldwin, J. Mol. Biol. 144, 431 (1980).Google Scholar
  61. 61.
    I. Baeza, P. Gariglio, L.M. Rangel, P. Chavez, L. Cervantes, C. Arguello, C. Wong, C. Montanez, Biochemistry 26, 6387 (1987).Google Scholar
  62. 62.
    P.G. Arscott, A.-Z. Li, V.A. Bloomfield, Biopolymers 30, 619 (1990).Google Scholar
  63. 63.
    V.A. Bloomfield, Biopolymers 31, 1471 (1991).Google Scholar
  64. 64.
    C. Ma, V.A. Bloomfield, Biophys. J. 19, 234 (1994).Google Scholar
  65. 65.
    V.A. Bloomfield, Curr. Opin. Struct. Biol. 6, 334 (1996).Google Scholar
  66. 66.
    V.A. Bloomfield, Biopolymers 44, 269 (1997).Google Scholar
  67. 67.
    H. Deng, V.A. Bloomfield, J.M. Benevides, G.J. Thomas, Nucleic Acids Res. 28, 3379 (2000).Google Scholar
  68. 68.
    H. Deng, V.A. Bloomfield, Biophys. J. 77, 1556 (1999).Google Scholar
  69. 69.
    D.C. Rau, V.A. Parsegian, Biophys. J. 61, 246 (1992).Google Scholar
  70. 70.
    R. Podgornik, D.C. Rau, V.A. Parsegian, Biophys. J. 66, 962 (1994).CrossRefGoogle Scholar
  71. 71.
    R. Marquet, C. Houssier, J. Biomol. Struct. Dyn. 9, 159 (1991).Google Scholar
  72. 72.
    A.G. Moreira, R.R. Netz, Europhys. Lett. 52, 705 (2000).ADSGoogle Scholar
  73. 73.
    R.R. Netz, H. Orland, Eur. Phys. J. E 1, 203 (2000).Google Scholar
  74. 74.
    A.W.C. Lau, D. Levine, P. Pincus, Phys. Rev. Lett. 84, 4116 (2000).ADSGoogle Scholar
  75. 75.
    A.W.C. Lau, P. Pincus, D. Levine, H.A. Fertig, Phys. Rev. E 63, 051604 (2001).ADSGoogle Scholar
  76. 76.
    A.W.C. Lau, D.B. Lukatsky, P. Pincus, S.A. Safran, Phys. Rev. E 65, 051502 (2002).ADSGoogle Scholar
  77. 77.
    A.W.C. Lau, P. Pincus, Phys. Rev. E 66, 041501 (2002).ADSGoogle Scholar
  78. 78.
    R. Kjellander, Ber. Buns. Ges. Phys. Chem. 100, 894 (1996).Google Scholar
  79. 79.
    H. Greberg, R. Kjellander, J. Chem. Phys. 108, 2940 (1998).ADSGoogle Scholar
  80. 80.
    M. Deserno, F. Jiménez-Ängeles, C. Holm, M. Lozada-Cassou, J. Phys. Chem. B 105, 10983 (2001).Google Scholar
  81. 81.
    J.X. Tang, P.A. Janmey, J. Biol. Chem. 271, 8556 (1996). Google Scholar
  82. 82.
    J.X. Tang, S. Wong, P.T. Tran, P.A. Janmey, Ber. Buns. Ges. Phys. Chem. 100, 796 (1996).Google Scholar
  83. 83.
    G.C.L. Wong, A. Lin, J.X. Tang, Y. Li, P.A. Janmey, C.R. Safinya, Phys. Rev. Lett. 91, 018103 (2003).ADSGoogle Scholar
  84. 84.
    I. Borukhov, R. Bruinsma, Phys. Rev. Lett. 87, 158101 (2001).ADSGoogle Scholar
  85. 85.
    J.C. Butler, T.E. Angelini, J.X. Tang, G.C.L. Wong, Phys. Rev. Lett. 91, 028301 (2003).ADSGoogle Scholar
  86. 86.
    H. Liang, T.E. Angelini, J. Ho, P.V. Braun, G.C.L. Wong, J. Am. Chem. Soc. 125, 11786 (2003).CrossRefPubMedGoogle Scholar
  87. 87.
    T.E. Angelini, H. Liang, W. Wriggers, G.C.L. Wong, Proc. Natl. Acad. Sci. U.S.A. 100, 8634 (2003).ADSGoogle Scholar
  88. 88.
    A. McGough, B. Pope, W. Chiu, A. Weeds, J. Cell. Biol. 138, 771 (1997).Google Scholar
  89. 89.
    H. Richardsen, U. Vierl, G. Cevc, W. Fenzl, Europhys. Lett. 34, 543 (1996).ADSGoogle Scholar
  90. 90.
    R. Das, T.T. Mills, L.W. Kwok, G.S. Maskel, I.S. Millet, S. Doniach, K.D. Finkelstein, D. Herschlag, L. Pollack, Phys. Rev. Lett. 90, 188103 (2003).ADSGoogle Scholar
  91. 91.
    H. Lodish, A. Berk, S.L. Zipursky, P. Matsudaira, D. Baltimore, J. Darnell, Molecular Cell Biology, 4th ed. (Freeman, New York, 2000).Google Scholar
  92. 92.
    P. Sheterline, J. Clayton, J.C. Sparrow, Actin (Oxford University Press Inc., New York, 1998).Google Scholar
  93. 93.
    H.A. Al-Khayat, N. Yagi, J.M. Squire, J. Mol. Biol. 252, 611 (1995).Google Scholar
  94. 94.
    T.T. Tibbits, D.L.D. Caspar, Acta. Cryst. A 49, 532 (1993).Google Scholar
  95. 95.
    P.A. Janmey, J. Peetermans, K.S. Zaner, T.P. Stossel, T. Tanaka, J. Biol. Chem. 261, 8357 (1986).Google Scholar
  96. 96.
    K.C. Holmes, D. Popp, W. Gebhard, W. Kabsch, Nature 347, 44 (1990).ADSGoogle Scholar
  97. 97.
    R.H. Coridan, T.E. Angelini, L.K. Sanders, W. Xian, G.C.L. Wong, unpublished results (2004).Google Scholar
  98. 98.
    E.H. Egelman, N. Francis, D.J. DeRosier, Nature 298, 131 (1982).ADSGoogle Scholar
  99. 99.
    U. Aebi, R. Millonig, H. Salvo, A. Engel, Ann. N.Y. Acad. Sci. 483, 100 (1986).ADSGoogle Scholar
  100. 100.
    Y. Tsuda, H. Yasutake, A. Ishijima, T. Yanagida, Proc. Natl. Acad. Sci. U.S.A. 93, 12937 (1996).ADSGoogle Scholar
  101. 101.
    J. Lee, E. Luijten, unpublished results (2004).Google Scholar
  102. 102.
    P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge Univeristy Press, New York, 1995).Google Scholar
  103. 103.
    J. Als-Nielsen, J.D. Litster, R.J. Birgeneau, M. Kaplan, C.R. Safinya, A. Lindegaard-Andersen, S. Mathiesen, Phys. Rev. B 22, 312 (1980).CrossRefADSGoogle Scholar
  104. 104.
    G.C.L. Wong, W.H. de Jeu, H. Shao, K.S. Liang, R. Zentel, Nature 389, 576 (1997).CrossRefGoogle Scholar
  105. 105.
    C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1966).Google Scholar
  106. 106.
    R.P. Feynman, Statistical MechanicsGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  • T. E. Angelini
    • 1
  • H. Liang
    • 1
  • W. Wriggers
    • 2
  • G. C. L. Wong
    • 1
  1. 1.Department of Materials Science & Engineering, Department of Physics, Department of BioengineeringUniversity of IllinoisUrbana-ChampaignUSA
  2. 2.School of Health Information SciencesUniversity of Texas Health Science Center at HoustonHoustonUSA

Personalised recommendations