Advertisement

The European Physical Journal E

, Volume 15, Issue 3, pp 255–263 | Cite as

Particle thermophoresis in liquids

  • A. ParolaEmail author
  • R. Piazza
Article

Abstract.

We present a microscopic description of thermophoretic phenomena in dilute suspensions of spherical colloids. The specific particle/solvent interfacial interactions generate a force density field \( \bf F\) on the surrounding fluid which in turn gives rise to an “effective force” on the colloid. In our approach, such a force turns out to be solely related to the non-conservative anisotropic contribution to \( \bf F\) brought forth by the thermal gradient. By adopting a Smoluchowski picture of colloid motion, we find a general expression for the Soret coefficient ST, which we apply to the specific cases of neutral colloids in pure solvent and of Debye-Hückel systems. For the latter, our result for ST agrees with those obtained by previous hydrodynamic approaches.

PACS.

82.70.Dd Colloids 66.10.Cb Diffusion and thermal diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Piazza, T. Bellini, V. Degiorgio, Phys. Rev. Lett. 71, 4267 (1993).Google Scholar
  2. 2.
    R.J. Hunter, Foundations of Colloid Science, 2nd edition (Oxford University Press, Oxford, 2001) pp. 374-425.Google Scholar
  3. 3.
    W.B. Russel, D.A. Saville, W.R. Showalter, Colloidal Dispersions (Cambridge University Press, Cambridge, 1989) pp. 456-503.Google Scholar
  4. 4.
    C. Ludwig, Sitzungsber. Akad. Wiss. Wien Math.-Naturwiss. Kl. 20, 539 (1859)Google Scholar
  5. 5.
    E. Ruckenstein, J. Colloid Int. Sci. 83, 77 (1981).CrossRefGoogle Scholar
  6. 6.
    K.I. Morozov, JETP 88, 944 (1999).CrossRefGoogle Scholar
  7. 7.
    K.I. Morozov, in Thermal Nonequilibrium Phenomena in Fluid Mixtures, Lect. Notes Phys., Vol. 584, edited by W. Köhler, S. Wiegand (Springer-Verlag, Berlin, 2002) pp. 38-59.Google Scholar
  8. 8.
    F. Brochard, P.-G. de Gennes, C. R. Acad. Sci. Paris II 293, 1025 (1981).Google Scholar
  9. 9.
    M.E. Schimpf, J.C. Giddings, Macromolecules, 20 1561 (1987).Google Scholar
  10. 10.
    K.I. Morozov, J. Magn. & Magn. Mater. 201, 248 (1999).Google Scholar
  11. 11.
    E. Blums, J. Magn. & Magn. Mater. 252, 189 (2002).Google Scholar
  12. 12.
    B.V. Derjaguin, G.P. Sidorenkov, Dokl. Acad. Nauk SSSR 32, 622 (1941).Google Scholar
  13. 13.
    R. Piazza, A. Guarino, Phys. Rev. Lett. 88, 208302 (2002).Google Scholar
  14. 14.
    S. Wiegand, J. Phys. Condens. Matter 16, R357 (2004)Google Scholar
  15. 15.
    K.J. Zhang, M.E. Briggs, R.W. Gammon, J.W. Sengers, J.F. Douglas, J. Chem. Phys. 111, 2270 (1999).CrossRefGoogle Scholar
  16. 16.
    S. Iacopini, R. Piazza, Europhys. Lett. 59, 142 (2003).Google Scholar
  17. 17.
    J. Rauch, W. Köhler, Phys. Rev. Lett. 88, 185901 (2002).Google Scholar
  18. 18.
    D. Braun, A. Libchaber, Phys. Rev. Lett. 89 188103 (2002).Google Scholar
  19. 19.
    W. van Megen, I. Snook, Adv. Colloid Interface Sci. 21, 119 (1984).CrossRefGoogle Scholar
  20. 20.
    J.L. Anderson, Annu. Rev. Fluid Mech. 21, 61 (1989)CrossRefzbMATHGoogle Scholar
  21. 21.
    See, for instance, R. Balescu, Statistical Physics (Wiley, New York, 1975) pp. 669-675.Google Scholar
  22. 22.
    S. Chapman, Proc. R. Soc. London, Ser. A 119, 34 (1928).Google Scholar
  23. 23.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, New York, 1987) pp. 11-12 and 58-64.Google Scholar
  24. 24.
    N.O. Young, J.S. Goldstein, M.J. Block, J. Fluid Mech. 6, 350 (1959).zbMATHGoogle Scholar
  25. 25.
    S. Alexander, P.M. Chaikin, P. Grant, G.J. Morales, P. Pincus, J. Chem. Phys. 80, 5776 (1984).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2004

Authors and Affiliations

  1. 1.INFM and Dipartimento di Fisica e MatematicaUniversità dell’InsubriaComoItaly
  2. 2.INFM and Dipartimento di Ingegneria NuclearePolitecnico di MilanoMilanoItaly

Personalised recommendations