The European Physical Journal E

, Volume 15, Issue 4, pp 413–419

Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps

Article

Abstract.

A cholesteric liquid crystal can be considered as a one-dimensional photonic crystal with a refractive index that is regularly modulated along the helix axis because of the particular arrangement of the molecules. The result is that the propagation of light is suppressed for a particular range of wavelengths (bandgap). A polymer-stabilized cholesteric liquid crystal (PSCLC), which is obtained by in situ photopolymerization of reactive liquid-crystal molecules in the presence of non-reactive liquid-crystal molecules in an oriented Bragg planar texture, is elaborated by combining the UV-curing with a thermally induced pitch variation. As a consequence, it is shown here that memory effects are introduced into the characteristics of the reflection band of the material at room temperature. In the visible spectrum, the reflection bandwidth can be tuned in agreement with the thermal ramp and broadened. In addition, the bandgap filters can be switched between broadband reflective, scattering and transparent states by subjecting them to an electric field. Related application fields of these functional materials are switchable smart windows for the control of the solar-light spectrum and white-or-black polarizer-free reflective displays.

PACS.

78.20.-e Optical properties of bulk materials and thin films 42.70.Df Liquid crystals 61.30.Pq Microconfined liquid crystals: droplets, cylinders, randomly confined liquid crystals, polymer dispersed liquid crystals, and porous systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).Google Scholar
  2. 2.
    K. Sakoda, Optical Properties of Photonic Crystals (Springer Verlag, Berlin, 2001).Google Scholar
  3. 3.
    D. Dunmur, K. Toriyama, in Physical Properties of Liquid Crystals, edited by D. Demus, J. Goodby, G.W. Gray, H.-W. Spiess, V. Vill (Wiley-VCH, Weinheim, 1999) pp. 124-128.Google Scholar
  4. 4.
    For a review, I. Dierking, Adv. Mater. 12, 167 (2000).CrossRefGoogle Scholar
  5. 5.
    a) D.-K. Yang, L.-C. Chien, Y.K. FungGoogle Scholar
  6. 6.
    U. Behrens, H.-S. Kitzerow, Pol. Adv. Tech. 5, 433 (1994).CrossRefGoogle Scholar
  7. 7.
    S. Zumer, G.P. Crawford, in Liquid Crystals in Complex Geometries, edited by G.P. Crawford, S. Zumer (Taylor and Francis, London, 1996) Chapt. 4. Google Scholar
  8. 8.
    H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, T. Kajiyama, Nature Mater. 1, 64 (2002).CrossRefGoogle Scholar
  9. 9.
    F.-H. Kreuzer, D. Andrejewski, W. Haas, N. Häberle, G. Riepl, P. Spes, Mol. Cryst. Liq. Cryst. 199, 345 (1991).Google Scholar
  10. 10.
    E. Nouvet, M. Mitov, Mol. Cryst. Liq. Cryst. 413, 515 (2004).CrossRefGoogle Scholar
  11. 11.
    a) R. Cano, Bull. Soc. Fr. Mineral. Crystallogr. 90, 333 (1967)Google Scholar
  12. 12.
    M. Mitov, A. Boudet, P. Sopéna, P. Sixou, Liq. Cryst. 23, 903 (1997).CrossRefGoogle Scholar
  13. 13.
    C.V. Rajaram, S.D. Hudson, L.-C. Chien, Chem. Mater. 7, 2300 (1995).Google Scholar
  14. 14.
    F. Du, S.-T. Wu, Appl. Phys. Lett. 83, 1310 (2003).CrossRefGoogle Scholar
  15. 15.
    C.V. Rajaram, S.D. Hudson, L.-C. Chien, Chem. Mater. 8, 2451 (1996).CrossRefGoogle Scholar
  16. 16.
    D.-K. Yang, L.-C. Chien, J.W. Doane, Appl. Phys. Lett. 60, 3102 (1992).CrossRefGoogle Scholar
  17. 17.
    H. Kelker, R. Hatz, Handbook of Liquid Crystals (Verlag Chemie, Weinheim, 1980) pp. 330-332.Google Scholar
  18. 18.
    R.A.M. Hikmet, H. Kemperman, Liq. Cryst. 26, 1645 (1999).CrossRefGoogle Scholar
  19. 19.
    D.J. Broer, J. Lub, G.N. Mol, Nature 378, 467 (1995).CrossRefGoogle Scholar
  20. 20.
    A. Lavernhe, M. Mitov, C. Binet, C. Bourgerette, Liq. Cryst. 28, 803 (2001).CrossRefGoogle Scholar
  21. 21.
    M. Mitov, A. Boudet, P. Sopéna, Eur. Phys. J. B 8, 327 (1999).Google Scholar
  22. 22.
    A. Boudet, C. Binet, M. Mitov, C. Bourgerette, E. Boucher, Eur. Phys. J. E 2, 247 (2000).Google Scholar
  23. 23.
    M. Mitov, C. Binet, A. Boudet, C. Bourgerette, Mol. Cryst. Liq. Cryst. 358, 209 (2001).Google Scholar
  24. 24.
    M. Mitov, C. Binet, C. Bourgerette, in Liquid Crystals V, edited by I.-C. Khoo, Proc. SPIE 4463, 11 (2001).CrossRefGoogle Scholar
  25. 25.
    R.A.M. Hikmet, Mol. Cryst. Liq. Cryst. 198, 357 (1991).Google Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2004

Authors and Affiliations

  1. 1.Centre d’Elaboration de Matériaux et d’Etudes StructuralesCEMES-CNRSToulouse cedex 4France

Personalised recommendations