The European Physical Journal E

, Volume 14, Issue 4, pp 341–365 | Cite as

On dense granular flows



The behaviour of dense assemblies of dry grains submitted to continuous shear deformation has been the subject of many experiments and discrete particle simulations. This paper is a collective work carried out among the French research group Groupement de Recherche Milieux Divisés (GDR MiDi). It proceeds from the collection of results on steady uniform granular flows obtained by different groups in six different geometries both in experiments and numerical works. The goal is to achieve a coherent presentation of the relevant quantities to be measured i.e. flowing thresholds, kinematic profiles, effective friction, etc. First, a quantitative comparison between data coming from different experiments in the same geometry identifies the robust features in each case. Second, a transverse analysis of the data across the different configurations, allows us to identify the relevant dimensionless parameters, the different flow regimes and to propose simple interpretations. The present work, more than a simple juxtaposition of results, demonstrates the richness of granular flows and underlines the open problem of defining a single rheology.


Collective Work Relevant Quantity Simple Interpretation Discrete Particle Granular Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.L. Brown, J.C. Richards, Principle of Powder Mechanics (Pergamon, New York, 1970).Google Scholar
  2. 2.
    J. Duran, Sand, Powders and Grains (Springer-Verlag, New York, 1999).Google Scholar
  3. 3.
    H.J. Herrmann, J.-P. Hovi, S. Luding (Editors), Physics of Dry Granular Media (Kluwer Academic Publishers, Dordrecht, 1998).Google Scholar
  4. 4.
    F. Chevoir, J.N. Roux (Editors), Colloque physique et mécanique des matériaux granulaires (Laboratoire Central des Ponts et Chaussées, Paris, 2000).Google Scholar
  5. 5.
    P.G. De Gennes, Physica A 261, 267 (1998).Google Scholar
  6. 6.
    U. Tüzün, G.T. Houlsby, R.M. Nedderman, S.B. Savage, Chem. Eng. Sci. 37, 1691 (1982).CrossRefGoogle Scholar
  7. 7.
    S.B. Savage, Flow of granular materials, in Theoretical and Applied Mechanics, edited by P. Germain, M. Piau, D. Caillerie (Amsterdam, North Holland, 1989) pp. 241-266Google Scholar
  8. 8.
    K.R. Hutter, K.R. Rajagopal, Continuum Mech. Thermodyn. 6, 81 (1994).MathSciNetGoogle Scholar
  9. 9.
    J. Rajchenbach, Adv. Phys. 49, 229 (2000).CrossRefGoogle Scholar
  10. 10.
    R.M. Nedderman, Statics and Kinematics of Granular Materials (Cambridge University Press, Cambridge, 1992).Google Scholar
  11. 11.
    A. Schofield, P. Wroth, Critical State Soil Mechanics (McGraw-Hill, London, 1968).Google Scholar
  12. 12.
    C.S. Campbell, Ann. Rev. Fluid Mech. 22, 57 (1990).CrossRefGoogle Scholar
  13. 13.
    I. Goldhirsch, Chaos 9, 659 (1999).CrossRefGoogle Scholar
  14. 14.
    O. Pouliquen, F. Chevoir, C. R. Phys. 3, 163 (2002).CrossRefGoogle Scholar
  15. 15.
    S.B. Savage, M. Sayed, J. Fluid Mech. 142, 391 (1984).Google Scholar
  16. 16.
    D.M. Hanes, D.L. Inman, J. Fluid Mech. 150, 357 (1985).Google Scholar
  17. 17.
    M. Babic, H.H. Shen, H.T. Shen, J. Fluid Mech. 219, 81 (1990).Google Scholar
  18. 18.
    P.A. Thompson, G.S. Grest, Phys. Rev. Lett. 67, 1751 (1991).Google Scholar
  19. 19.
    Y. Zhang, C.S. Campbell, J. Fluid Mech. 237, 541 (1992).Google Scholar
  20. 20.
    O.J. Schwarz, Y. Horie, M. Shearer, Phys. Rev. E 57, 2053 (1998).CrossRefGoogle Scholar
  21. 21.
    E. Aharonov, D. Sparks, Phys. Rev. E 65, 051302 (2002).CrossRefGoogle Scholar
  22. 22.
    D. Volfson, L.S. Tsimring, I.S. Aranson, Phys. Rev. E 68, 021301 (2003).CrossRefGoogle Scholar
  23. 23.
    I. Iordanoff, M.M. Khonsari, ASME J. Tribol. (2002).Google Scholar
  24. 24.
    F. da Cruz, F. Chevoir, J.-N. Roux, I. Iordanoff, Macroscopic friction of dry granular materials, in Transient Processes in Tribology, Proceedings of the 30th Leeds-Lyon Symposium on Tribology, edited by A Lubrecht, G. Dalmaz, Tribol. Interface Eng. Vol. 43 (Elsevier, Amsterdam, 2004).Google Scholar
  25. 25.
    F. Chevoir, F. da Cruz, M. Prochnow, P. Rognon, J.-N. Roux, Dense granular flows: friction and Jamming, in Proceedings of the 17th ASCE Engineering Mechanics Conference, June 13-16, 2004, University of Delaware, Newark, DE, USA.Google Scholar
  26. 26.
    F. da Cruz, Friction and jamming in granular flows, PhD Thesis, Ecole Nationale des Ponts et Chaussees, Marne la vallée, France, 2004.Google Scholar
  27. 27.
    J.N. Roux, G. Combe, C. R. Phys. 3, 131 (2002).CrossRefGoogle Scholar
  28. 28.
    G.I. Tardos, M.I Khan, and D.G. Schaeffer, Phys. Fluids 10, 335 (1998).CrossRefGoogle Scholar
  29. 29.
    B. Miller, C. O’Hern, and R.P. Behringer, Phys. Rev. Lett. 77, 3110 (1996).Google Scholar
  30. 30.
    D. Howell, R.P. Behringer, C. Veje, Phys. Rev. Lett. 82, 5241 (1999).Google Scholar
  31. 31.
    C. Veje, D. Howell, R.P. Behringer, Phys. Rev. E 59, 739 (1999).CrossRefGoogle Scholar
  32. 32.
    D.M. Mueth G.F. Debregeas, G.S. Karczmart, P.J. Eng, S.R. Nagel, H.M. Jaeger, Nature 406, 385 (2000).CrossRefGoogle Scholar
  33. 33.
    L. Bocquet, W. Losert, D. Schalk, T.C. Lubensky, J.P. Gollub, Phys. Rev. E 65, 011307 (2002).CrossRefGoogle Scholar
  34. 34.
    M. Lätzel, S. Luding, H.J.Hermann, Granular Matter 2, 123 (2000).CrossRefGoogle Scholar
  35. 35.
    S. Schöllmann, Phys. Rev. E 59, 889 (1999).CrossRefGoogle Scholar
  36. 36.
    F. da Cruz, F. Chevoir, D. Bonn, P. Coussot, Phys. Rev. E 66, 051305 (2002).CrossRefGoogle Scholar
  37. 37.
    G. Chambon, J. Schmittbuhl, A. Corfdir, J.P. Vilotte, S. Roux, Phys. Rev. E 68, 011304 (2003).CrossRefGoogle Scholar
  38. 38.
    S. Nasuno, A. Kudrolli, A. Bak, J.P. Gollub, Phys. Rev. E 58, 2161 (1998).CrossRefGoogle Scholar
  39. 39.
    R.M. Nedderman, C. Laohakul, Powder Technol. 25, 91 (1980).CrossRefGoogle Scholar
  40. 40.
    V.V.R. Natarajan, M.L. Hunt, E.D. Taylor, J. Fluid Mech. 304, 1 (1995).Google Scholar
  41. 41.
    O. Pouliquen, R. Gutfraind, Phys. Rev. E 53, 552 (1996).CrossRefGoogle Scholar
  42. 42.
    N. Menon, D.J. Durian, Science 257, 1920 (1997).CrossRefGoogle Scholar
  43. 43.
    F. Chevoir, M. Prochnow, P. Moucheront, F. da Cruz, F. Bertrand, JP. Guilbaud, Ph. Coussot, J.N. Roux, Dense granular flows in a vertical chute, in Powder and Grains 2001, edited by Y. Kishino (A.A. Balkema, Amsterdam, 2001) pp. 399-402.Google Scholar
  44. 44.
    M. Prochnow, Ecoulements denses de grains secs, PhD Thesis, Ecole Nationale des Ponts et Chaussées, Marne la vallée, France, 2002.Google Scholar
  45. 45.
    C. Denniston, H. Li, Phys. Rev. E 59, 3289 (1999).CrossRefGoogle Scholar
  46. 46.
    G.W. Baxter, R.P. Behringer, T. Fagert, G.A Johnson, Phys. Rev. Lett. 62, 2825 (1989).Google Scholar
  47. 47.
    Y. Bertho, F. Giorgiutti, J.P. Hulin, Phys. Fluids 459, 3358 (2003).CrossRefGoogle Scholar
  48. 48.
    Y. Bertho, F. Giorgiutti, T.E. Raafat, J. Hinch, H.J. Hermann, J.P. Hulin, J. Fluid Mech. 459, 317 (2002).CrossRefGoogle Scholar
  49. 49.
    P.C. Johnson, P. Nott, R. Jackson, J. Fluid Mech. 210, 501 (1990).Google Scholar
  50. 50.
    C. Ancey, Phys. Rev. E 65, 011304 (2001).CrossRefGoogle Scholar
  51. 51.
    E. Azanza, Ecoulements granulaires bidimensionnels sur un plan incliné, PhD Thesis, Ecole des Ponts et Chaussées, Marne la Vallée, France, 1997.Google Scholar
  52. 52.
    G. Berton, R. Delannay, P. Richard, N. Taberlet, A. Valance, Phys. Rev. E 68, 051303 (2003).CrossRefGoogle Scholar
  53. 53.
    S. Dippel, Microscopic dynamics of granular materials, PhD Thesis, Höchstleistungsrechenzentrum Jül-3510 (1998).Google Scholar
  54. 54.
    O. Pouliquen, Phys. Fluids 11, 542 (1999).CrossRefGoogle Scholar
  55. 55.
    C. Goujon, N. Thomas, B. Dalloz-Dubrujeaud, Eur. Phys. J. E 11, 147 (2003).CrossRefGoogle Scholar
  56. 56.
    G. Félix and N. Thomas, Earth Planet. Sci. Lett. 221, 197 (2004).CrossRefGoogle Scholar
  57. 57.
    P. Rognon, Ecoulements granulaires sur plan incliné: étude expérimentale de la transition vers l’arrêt. Internship report Maîtrise de sciences des matériaux, Université de Marne la Vallée, 2003.Google Scholar
  58. 58.
    A. Daerr, S. Douady, Nature 399, 241 (1999).CrossRefGoogle Scholar
  59. 59.
    L. Quartier, B. Andreotti, GDR MiDi communication (2003).Google Scholar
  60. 60.
    L.E. Silbert, D. Ertas, G.S. Grest, T.C. Halsey, D. Levine, S.J. Plimpton, Phys. Rev. E 64, 051302 (2001).CrossRefGoogle Scholar
  61. 61.
    L.E. Silbert, J.W. Landry, G.S. Grest, Phys. Fluids 15, 1 (2003).CrossRefMathSciNetzbMATHGoogle Scholar
  62. 62.
    F. Chevoir, M. Prochnow, J.T. Jenkins, P. Mills, Dense Granular Flows Down an Inclined Plane, in Powders and Grains, edited by Y. Kishino (Lisse, Swets and Zeitlinger, Tokyo, 2001) pp. 373-376,.Google Scholar
  63. 63.
    Y. Forterre, O. Pouliquen, J. Fluid Mech. 486, 21 (2003).CrossRefMathSciNetGoogle Scholar
  64. 64.
    S. Douady, B. Andreotti, A. Daerr, P. Cladé, The Four Fronts and the Two Avalanches (Lisse, Swets and Zeitlinger, Tokyo, 2001) pp. 443-446.Google Scholar
  65. 65.
    J. Rajchenbach, Phys. Rev. Lett. 65, 2221 (1990).CrossRefGoogle Scholar
  66. 66.
    C.H. Liu, H.M. Jaeger, S.R. Nagel, Phys. Rev. A 43, 7091 (1991).CrossRefGoogle Scholar
  67. 67.
    Y. Grasselli, H.J. Herrmann, Physica A 246, 301 (1997).CrossRefGoogle Scholar
  68. 68.
    Y.C. Zhou, B.H. Xu, A.B. Yu, Phys. Rev. E 64, 021301 (2001).CrossRefGoogle Scholar
  69. 69.
    Y.C. Zhou, B.H. Xu, A.B. Yu, P. Zulli, Powder Technol. 125, 45 (2002).CrossRefGoogle Scholar
  70. 70.
    P. Evesque, J. Rajchenbach, C. R. Phys. Acad. Sci. (Paris) 307, 223 (1988).Google Scholar
  71. 71.
    M. Nakagawa, S.A. Altobelli, A. Caprihan, E. Fukushima, E. Jeong, Exp. Fluids 16, 54 (1993).Google Scholar
  72. 72.
    M. Caponeri, S. Douady, S. Fauve, C. Laroche, Dynamics of Avalanches in a Rotating Cylinder, in Mobile particulate systems, edited by E. Guazzelli & L. Oger (Kluwer Academic Publisher, Dordrecht, 1995) pp. 331-366.Google Scholar
  73. 73.
    D.V. Khakhar, J.J. McCarthy, T. Shinbrot, J.M. Ottino, Phys. Fluids 9, 31 (1997).CrossRefGoogle Scholar
  74. 74.
    T. Elperin, A. Vikhanski, Europhys. Lett. 42, 619 (1998).CrossRefGoogle Scholar
  75. 75.
    C.M. Dury, G.H. Ristow, J.L. Moss, M. Nakagawa, Phys. Rev. E 57, 4491 (1998).CrossRefGoogle Scholar
  76. 76.
    K. Yamane, M. Nakagawa, S.A. Altobelli, T. Tanaka, Y. Tsuji, Phys. Fluids 10, 1419 (1998).CrossRefGoogle Scholar
  77. 77.
    T.S. Komatsu, S. Inagasaki, N. Nakagawa, S. Nasuno, Phys. Rev. Lett. 86, 1757 (2001).CrossRefGoogle Scholar
  78. 78.
    D.V. Khakhar, A.V. Orpe, P. Andresén, and J.M. Ottino, J. Fluid Mech. 9, 195 (2001).Google Scholar
  79. 79.
    A.V. Orpe, D.V. Khakhar, Phys. Rev E 64, 031302 (2001).CrossRefGoogle Scholar
  80. 80.
    D. Bonamy, F. Daviaud, L. Laurent, Phys. Fluids 14, 1666 (2002).CrossRefGoogle Scholar
  81. 81.
    D. Bonamy, F. Daviaud, L. Laurent, M. Bonetti, J.P. Bouchaud, Phys. Rev. Lett. 89, 034301 (2002).Google Scholar
  82. 82.
    G. Félix, PhD Thesis, Institut National Polytechnique de Lorraine, Nancy, France, 2002.Google Scholar
  83. 83.
    S. Courrech du Pont, Avalanches granulaires en milieu fluide, PhD Thesis, Université Paris XI, Orsay, France, 2003.Google Scholar
  84. 84.
    M. Renouf, GDR MiDi communication (2003).Google Scholar
  85. 85.
    N. Taberlet, P. Richard, A. Valance, W. Losert, J.M. Pasini, J.T. Jenkins, R. Delannay, Phys. Rev. Lett. 91, 264301 (2003).Google Scholar
  86. 86.
    S. Courrech du Pont, P. Gondret, B. Perrin, M. Rabaud, Phys. Rev. Lett. 90, 044301 (2003).Google Scholar
  87. 87.
    P. Boltenhagen, Eur. Phys. J. B 12, 75 (1999).CrossRefGoogle Scholar
  88. 88.
    S. Courrech du Pont, P. Gondret, B. Perrin, M. Rabaud, Europhys. Lett. 61, 492 (2003).CrossRefGoogle Scholar
  89. 89.
    O. Pouliquen, GDR MiDi communication (2003).Google Scholar
  90. 90.
    B. Andreotti, GDR MiDi communication (2003).Google Scholar
  91. 91.
    D. Bonamy, Phénoménes collectifs dans les matériaux granulaires, PhD Thesis, Université Paris XI, Orsay, France, 2001.Google Scholar
  92. 92.
    L. Vanel, D.W. Howell, D. Clark, R.P. Behringer, E. Clément, Phys. Rev. E 60, R5040 (1999).Google Scholar
  93. 93.
    D. Fenistein, M. van Hecke, Nature 425, 256 (2003).CrossRefGoogle Scholar
  94. 94.
    D. Weaire, S. Hutzler, The Physics of Foam (Clarendon Press, Oxford, 1999).Google Scholar
  95. 95.
    A. Kabla, G. Debregeas, Phys. Rev. Lett. 90, 258303 (2003).Google Scholar
  96. 96.
    M.L. Falk, J.S. Langer, Phys. Rev. E 57, 7192 (1998).CrossRefGoogle Scholar
  97. 97.
    J. Rajchenbach, Phys. Rev. Lett. 90, 144302 (2003).CrossRefGoogle Scholar
  98. 98.
    D. Ertas, T.C. Halsey, Europhys. Lett. 60, 931 (2002).CrossRefGoogle Scholar
  99. 99.
    M.R. Kuhn, Mech. Mater. 31, 407 (1999).CrossRefGoogle Scholar
  100. 100.
    G. Debregeas, H. Tabuteau, J.M. di Miglio, Phys. Rev. Lett. 90, 258303 (2002).Google Scholar
  101. 101.
    F. Radjai, S. Roux, Phys. Rev. Lett. 89, 064302 (2003).Google Scholar
  102. 102.
    B. Andreotti, S. Douady, Phys. Rev. E 63, 0311305 (2001).CrossRefGoogle Scholar
  103. 103.
    P. Mills, D. Loggia, M. Texier, Europhys. Lett. 45, 733 (1999).CrossRefGoogle Scholar
  104. 104.
    O. Pouliquen, Y. Forterre, S. Ledizes, Adv. Complex Syst. 4, 441 (2001).CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • GDR MiDi
    • 1
  1. 1.Groupement De Recherche Milieux DivisésCNRS, GDR2181France

Personalised recommendations