The European Physical Journal E

, Volume 14, Issue 1, pp 7–16 | Cite as

Deformability of poly(amidoamine) dendrimers

  • A. Mecke
  • I. Lee
  • J. R. Baker jr.
  • M. M. Banaszak HollEmail author
  • B. G. Orr


Experimental data indicates that poly(amidoamine) (PAMAM) dendrimers flatten when in contact with a substrate, i.e. they are no longer spherical, but resemble flat disks. In order to better understand the deformation behavior of these branched polymers, a series of atomistic molecular dynamics simulations is performed. The resulting flattened dendrimer conformations are compared to atomic force microscopy (AFM) images of individual dendrimers at air/mica and water/mica interfaces. The ability of the polymers to deform is investigated as a function of dendrimer generation (2-5) and the required energies are calculated. Our modeling results show good agreement with the experimental AFM images, namely that dendrimers are highly flexible and capable of forming multiple interaction sites between most of their branch ends and the substrate. The deformation energy scales with dendrimer generation and does not indicate an increase in stiffness between generations 2 and 5 due to steric effects.


Atomic Force Microscopy Molecular Dynamic Molecular Dynamic Simulation Dynamic Simulation Require Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.W. Bosman, H.M. Janssen, E.W. Meijer, Chem. Rev. 99, 1665 (1999).CrossRefGoogle Scholar
  2. 2.
    J. Haensler, F.C. Szoka jr., Bioconjugate Chem. 4, 372 (1993).Google Scholar
  3. 3.
    A. Bielinska, J.F. Kukowska-Latallo, J. Johnson, D.A. Tomalia, J. Baker jr., Nucleic Acids Res. 24, 2176 (1996).CrossRefGoogle Scholar
  4. 4.
    J.F. Kukowska-Latallo, A.U. Bielinska, J. Johnson, R. Spindler, D.A. Tomalia, J.R. Baker jr., Proc. Natl. Acad. Sci, USA 93, 4897 (1996).CrossRefGoogle Scholar
  5. 5.
    J.P. Thompson, C.-L. Schengrund, Glycoconjugate J. 14, 837 (1997).CrossRefGoogle Scholar
  6. 6.
    N. Malik, E.G. Evagorou, R. Duncan, Anti-Cancer Drugs 10, 767 (1999).Google Scholar
  7. 7.
    H. Maruyama-Tabata, Y. Harada, T. Matsumura, E. Satoh, F. Cui, M. Iwai, M. Kita, S. Hibi, J. Imanishi, T. Sawada, O. Mazda, Gene Therapy 7, 53 (2000).CrossRefGoogle Scholar
  8. 8.
    A. Quintana, E. Raczka, L. Piehler, I. Lee, A. Myc, I. Majoros, K. Patri, T. Thomas, J. Mule, J.R. Baker jr., Pharm. Res. 19, 1310 (2002).CrossRefGoogle Scholar
  9. 9.
    M. Wells, R.M. Crooks, J. Am. Chem. Soc. 118, 3988 (1996).CrossRefGoogle Scholar
  10. 10.
    K. Takada, D.J. Díaz, H.D. Abruña, I. Cuadrado, C. Casado, B. Alonso, M. Morán, J. Losada, J. Am. Chem. Soc. 119, 10763 (1997).CrossRefGoogle Scholar
  11. 11.
    V.V. Tsukruk, F. Rinderspacher, V.N. Bliznyuk, Langmuir 13, 2171 (1997).CrossRefGoogle Scholar
  12. 12.
    V.V. Tsukruk, Adv. Mater. 10, 253 (1998).CrossRefGoogle Scholar
  13. 13.
    V.N. Bliznyuk, F. Rinderspacher, V.V. Tsukruk, Polymer 39, 5249 (1998).CrossRefGoogle Scholar
  14. 14.
    A. Hierlemann, J.K. Campbell, L.A. Baker, R.M. Crooks, A.J. Ricco, J. Am. Chem. Soc. 120, 5323 (1998).CrossRefGoogle Scholar
  15. 15.
    H. Tokuhisa, M. Zhao, L.A. Baker, V.T. Phan, D.L. Dermody, M.E. Garcia, R.F. Peez, R.M. Crooks, T.M. Mayer, J. Am. Chem. Soc. 120, 4492 (1998).CrossRefGoogle Scholar
  16. 16.
    J. Li, L.T. Piehler, D. Qin, J.R. Baker, D.A. Tomalia, Langmuir 16, 5613 (2000).CrossRefGoogle Scholar
  17. 17.
    T.A. Betley, M.M. Banaszak Holl, B.G. Orr, D.R. Swanson, D.A. Tomalia, J.R. Baker jr., Langmuir 17, 2768 (2001).Google Scholar
  18. 18.
    T.A. Betley, J.A. Hessler, A. Mecke, M.M. Banaszak Holl, B.G. Orr, S. Uppuluri, D.A. Tomalia, J.R. Baker jr., Langmuir 18, 3127 (2002).CrossRefGoogle Scholar
  19. 19.
    T. Müller,, D.G. Yablon, R. Karchner, D. Knapp, M.H. Kleinmann, H. Fang, C.J. Durning, D.A. Tomalia, N.J. Turro, G.W. Flynn, Langmuir 18, 7452 (2002).CrossRefGoogle Scholar
  20. 20.
    M.L. Mansfield, Polymer 37, 3835 (1996).CrossRefGoogle Scholar
  21. 21.
    I. Lee, B.D. Athey, A.W. Wetzel, W. Meixner, J.R. Baker jr., Macromolecules 35, 4510 (2002).CrossRefGoogle Scholar
  22. 22.
    M.F. Ottaviani, F. Montalti, M. Romanelli, N.J. Turro, D.A. Tomalia, J. Phys. Chem. 100, 11033 (1996).CrossRefGoogle Scholar
  23. 23.
    R.C. van Duijvenbode, M. Borkovec, G.J.M. Koper, Polymer 39, 2657 (1998).CrossRefGoogle Scholar
  24. 24.
    S. Lifson, A.T. Hagler, P. Dauber, J. Am. Chem. Soc. 101, 5111 (1979).Google Scholar
  25. 25.
    B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, M. Karplus, J. Comp. Chem. 4, 187 (1983).Google Scholar
  26. 26.
    A.D. MacKerell jr., B. Brooks, C.L. Brooks III, L. Nilsson, B. Roux, Y. Won, M. Karplus, CHARMM: The Energy Function and Its Parameterization with an Overview of the Program, The Encyclopedia of Computational Chemistry, edited by P.v.R. Schleyer et al. Vol. 1 (John Wiley & Sons, Chichester, 1998) pp. 271-277.Google Scholar
  27. 27.
    C.L. Jackson, H.D. Chanzy, F.P. Booy, B.J. Drake, D.A. Tomalia, B.J. Bauer, E.J. Amis, Macromolecules 31, 6259 (1998).CrossRefGoogle Scholar
  28. 28.
    I.J. Majoros, B. Keszler, S. Woehler, T. Bull, J.R. Baker jr., Macromolecules 36, 5526 (2003).CrossRefGoogle Scholar
  29. 29.
    P.G. de Gennes, H. Hervet, J. Phys. Lett. 44, L351 (1983).Google Scholar
  30. 30.
    R.L. Lescanec, M. Muthukumar, Macromolecules 23, 2280 (1990).Google Scholar
  31. 31.
    M.L. Mansfield, L.I. Klushin, J. Phys. Chem. 96, 3994 (1992).Google Scholar
  32. 32.
    M.L. Mansfield, K.I. Klushin, Macromolecules 26, 4262 (1993).Google Scholar
  33. 33.
    M. Murat, G.S. Grest, Macromolecules 29, 1278 (1996).CrossRefGoogle Scholar
  34. 34.
    D. Boris, M. Rubinstein, Macromolecules 29, 7251 (1996).CrossRefGoogle Scholar
  35. 35.
    Z.Y. Chen, S.-M. Cui, Macromolecules 29, 7943 (1996).CrossRefGoogle Scholar
  36. 36.
    T.J. Prosa, B.J. Bauer, E.J. Amis, D.A. Tomalia, R. Scherrenberg, J. Polym. Sci. B 35, 2913 (1997).CrossRefGoogle Scholar
  37. 37.
    M.L. Mansfield, Macromolecules 33, 8043 (2000).CrossRefGoogle Scholar
  38. 38.
    G.R. Newkome, J.K. Young, G.R. Baker, R.L. Potter, L. Audoly, D. Cooper, C.D. Weis, Macromolecules 26, 2394 (1993).Google Scholar
  39. 39.
    S. Uppuluri, S.E. Keinath, D.A. Tomalia, P.R. Dvornic, Macromolecules 31, 4498 (1998).CrossRefGoogle Scholar
  40. 40.
    A.M. Naylor, W.A. Goddard, G.E. Kiefer, D.A. Tomalia, J. Am. Chem. Soc. 111, 2339 (1989).Google Scholar
  41. 41.
    D.A. Tomalia, A.M. Naylor, W.A. Goddard, Angew. Chem. Int. Ed. Engl. 29, 138 (1990).CrossRefGoogle Scholar
  42. 42.
    P. Miklis, T. Çagin and W.A. Goddard III, J. Am. Chem. Soc. 119, 7458 (1997).CrossRefGoogle Scholar
  43. 43.
    L. Cavallo, F. Fraternali, Chem. Eur. J. 4, 927 (1998).CrossRefGoogle Scholar
  44. 44.
    R. Scherrenberg, B. Coussens, P. van Vliet, G. Edouard, J. Brackman, E. de Brabander, K. Mortensen, Macromolecules 31, 456 (1998).CrossRefGoogle Scholar
  45. 45.
    P. Welch, M. Muthukumar, Macromolecules 31, 5892 (1998).CrossRefGoogle Scholar
  46. 46.
    A. Topp, B.J. Bauer, D.A. Tomalia, E.J. Amis, Macromolecules 32, 7232 (1999).CrossRefGoogle Scholar
  47. 47.
    G. Nisato, R. Ivkov, E.J. Amis, Macromolecules 33, 4172 (2000).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • A. Mecke
    • 1
    • 2
  • I. Lee
    • 3
  • J. R. Baker jr.
    • 2
  • M. M. Banaszak Holl
    • 4
    • 2
    Email author
  • B. G. Orr
    • 1
    • 2
  1. 1.Department of Physics, Harrison M. Randall LaboratoryThe University of MichiganAnn ArborUSA
  2. 2.Center for Biologic NanotechnologyThe University of Michigan Medical SchoolAnn ArborUSA
  3. 3.Michigan Center for Biological InformationThe University of Michigan Medical SchoolAnn Arbor
  4. 4.Department of ChemistryThe University of MichiganAnn ArborUSA

Personalised recommendations