Advertisement

The European Physical Journal E

, Volume 13, Issue 4, pp 409–415 | Cite as

The interfacial energy of two-dimensional bidisperse cellular fluids

  • W. NowickiEmail author
  • G. Nowicka
Article

Abstract.

The mixing energy of two biphasic fluid systems (dispersions of two liquids or a liquid and a gas, A and B in a liquid C), confined between two parallel plates, is calculated. Our attention is limited to concentrated and monodisperse systems, i.e. emulsions and foam/emulsions consisting of equal-size (if of the same composition) cells separated by a thin liquid film. It is demonstrated that the multiphase mixtures ordered into regular patterns can be stable in a wide range of interfacial tensions acting along A-C and B-C interfaces and also in a wide range of volume fractions of fluid A. Anisotropic properties of such well-ordered structures are also demonstrated.

Keywords

Interfacial Tension Liquid Film Interfacial Energy Parallel Plate Regular Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.B. Bowden, M. Weck, I.S. Choi, G.M. Whitesides, Acc. Chem. Res. 34, 231 (2001).CrossRefGoogle Scholar
  2. 2.
    P.L. Flaugh, S.E. O’Donnel, S.A. Asher, Appl. Spectrosc. 38, 847 (1984).Google Scholar
  3. 3.
    E. Yablonovitch, J. Opt. Soc. Am. B, 10, 283 (1993).Google Scholar
  4. 4.
    M.X. Wu, T. Fujiu, G.L. Messing, J. Non-Cryst. Solids 121, 407 (1990).CrossRefGoogle Scholar
  5. 5.
    E. Litovsky, M. Shapiro, A. Shavit, J. Am. Ceram. Soc. 79, 1366 (1996).Google Scholar
  6. 6.
    C.J. Brinker, G.W. Sherer, Sol-Gel Science (Academic Press, San Diego, 1990).Google Scholar
  7. 7.
    D.F. Evans, H. Wennerström, The Colloidal Domain, 2nd edition (Wiley-VCH, New York, 1999).Google Scholar
  8. 8.
    M.F. Vaz, M.A. Fortes, J. Phys. Condens. Matter 13, 1395 (2001).CrossRefGoogle Scholar
  9. 9.
    W. Thomson (Lord Kelvin), Philos. Mag. 24, 503 (1887).Google Scholar
  10. 10.
    D. Weaire, R. Phelan, Philos. Mag. Lett. 69, 107 (1994).Google Scholar
  11. 11.
    F. Graner, Y. Jiang, E. Janiaud, C. Flament, Phys. Rev. E 63, 011402 (2000).CrossRefGoogle Scholar
  12. 12.
    X.-F. Yuan, M. Doi, Colloid Surf. A, Physicochem. Eng. Asp. 144, 305 (1998).CrossRefGoogle Scholar
  13. 13.
    A.M. Kraynik, D.A. Reinelt, H.M. Princen, J. Rheol. 35, 1235 (1991).CrossRefMathSciNetGoogle Scholar
  14. 14.
    D. Weaire, C. Coughlan, A.M. Fortes, J. Mater. Process. Technol. 55, 178 (1995).CrossRefGoogle Scholar
  15. 15.
    T.C. Hales, Discrete Comput. Geom. 25, 1 (2001).MathSciNetzbMATHGoogle Scholar
  16. 16.
    P.I.C. Teixeira, F. Graner, M.A. Fortes, Eur. Phys. J. E 9, 447 (2002).Google Scholar
  17. 17.
    E. Manegold, Shaum (Strassenbau, Chemie und Technik, Heidelberg, 1953).Google Scholar
  18. 18.
    R. Garcia-Gonzales, C. Monnreau, J.-F. Thovert, P.M. Adler, W. Vignes-Adler, Colloid Surf. A, Physicochem. Eng. Asp. 151, 497 (1999).CrossRefGoogle Scholar
  19. 19.
    M.A. Fortes, P.I.C. Teixeira, Eur. Phys. J. E 6, 133 (2001).CrossRefGoogle Scholar
  20. 20.
    M.A. Fortes, P.I.C. Teixeira, Eur. Phys. J. E 6, 255 (2001).CrossRefGoogle Scholar
  21. 21.
    C. Isenberg, The Science of Soap Films and Soap Bubbles (Dover, New York, 1992).Google Scholar
  22. 22.
    S.J. Cox, D. Weaire, M.F. Vaz, Eur. Phys. J. E 7, 311 (2002).Google Scholar
  23. 23.
    S.H. Tolbert, A. Firouzi, G.D. Stucky, B.F. Chmelka, Science 278, 264 (1997).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Faculty of ChemistryA. Mickiewicz UniversityPoznańPoland

Personalised recommendations