Advertisement

The European Physical Journal E

, Volume 13, Issue 4, pp 363–378 | Cite as

Exploring the melting of a semirigid-chain polymer with temperature-resolved small-angle X-ray scattering

  • D. A. IvanovEmail author
  • S. Hocquet
  • M. Dosiére
  • M. H. J. Koch
Article

Abstract.

The thermal behavior of semirigid semicrystalline polymers differs significantly from that of flexible-chain polymers. The origin of the differences is believed to lie in the higher energy expenditure associated with the formation of adjacent re-entry folds at the crystalline surface in the case of semirigid chains. The effect of constraints imposed by the interlamellar amorphous regions on the neighboring crystals was studied with temperature-resolved synchrotron radiation small-angle X-ray scattering (SAXS). The analysis of SAXS patterns with a generalized paracrystalline lamellar stack model indicates that melting of a semirigid-chain polymer is not a random process but that the crystals grown in the smallest amorphous gaps melt first. This suggests that the hitherto largely neglected geometrical confinement effects may play an important role in determining the thermodynamic stability of semirigid-chain polymer crystals.

Keywords

Energy Expenditure Thermal Behavior Random Process Synchrotron Radiation Thermodynamic Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.A. Ivanov, A.M. Jonas, Macromolecules 31, 4546 (1998).CrossRefGoogle Scholar
  2. 2.
    D.A. Ivanov, A.M. Jonas, R. Legras, Polymer 41, 3719 (2000).CrossRefGoogle Scholar
  3. 3.
    C. Basire, D.A. Ivanov, Phys. Rev. Lett. 85, 5587 (2000).CrossRefGoogle Scholar
  4. 4.
    D.A. Ivanov, Z. Amalou, S.N. Magonov, Macromolecules 34, 8944 (2001).CrossRefGoogle Scholar
  5. 5.
    M. Pyda, A. Boller, J. Grebowicz, H. Chuah, B.V. Lebedev, B.J. Wunderlich, J. Polym. Sci. Part B 36, 2499 (1998).CrossRefGoogle Scholar
  6. 6.
    J. Yang, G. Sidoti, J. Liu, P.H. Geil, C.Y. Li, S.Z.D. Cheng, Polymer 42, 7181 (2001).CrossRefGoogle Scholar
  7. 7.
    W.T. Chung, W.J. Yeh, P.D. Hong, J. Appl. Polym. Sci. 83, 2426 (2002).CrossRefGoogle Scholar
  8. 8.
    B.J. Wang, C.Y. Li, J. Hanzlicek, S.Z.D. Cheng, P.H. Geil, J. Grebowicz, Polymer 42, 7171 (2001).CrossRefGoogle Scholar
  9. 9.
    J. Wu, J.M. Schultz, J.M. Samon, A.B. Pangelinan, H.H. Chuah, Polymer 42, 7141 (2001).CrossRefGoogle Scholar
  10. 10.
    J.M. Samon, A.B. Pangelinan, H.H. Chuah, Polymer 42, 7161 (2001).CrossRefGoogle Scholar
  11. 11.
    S.Z.D. Cheng, M.Y. Cao, B. Wunderlich, Macromolecules 19, 1868 (1986).Google Scholar
  12. 12.
    D.A. Ivanov, R. Legras, A.M. Jonas, Macromolecules 32, 1582 (1999).Google Scholar
  13. 13.
    G. Vigier, J. Tatibouet, A. Benatmane, R. Vassoille, Colloid Polym. Sci. 270, 1182 (1992).Google Scholar
  14. 14.
    W. Ruland, Colloid Polym. Sci. 255, 417 (1977).Google Scholar
  15. 15.
    M. Strobl, G.R. Schneider, J. Polym. Sci. 18, 1343(1980).CrossRefGoogle Scholar
  16. 16.
    S.B.R. Hosemann, Direct Analysis of Diffraction by Matter, North-Holland, (1962).Google Scholar
  17. 17.
    D.A. Ivanov et al. , unpublished.Google Scholar
  18. 18.
    M.H.J. Koch, J.Bordas, Nucl. Instrum. Methods 208, 435 (1983).CrossRefGoogle Scholar
  19. 19.
    C.J. Boulin, R. Kempf, A. Gabriel, M.H.J. Koch, Nucl. Instrum. Methods A 269, 312 (1988).CrossRefGoogle Scholar
  20. 20.
    G. Rapp, A. Gabriel, M. Dosiére, M.H.J. Koch, Nucl. Instrum. Methods A 357, 178 (1983).Google Scholar
  21. 21.
    D. Svergun, M.H.J. Koch, unpublished.Google Scholar
  22. 22.
    A.J.C. Wilson, E. Prince, International Tables for Crystallography, C, Kluwer Academic Publishers, Dordrecht (1999).Google Scholar
  23. 23.
    J.T. Koberstein, B. Morra, R.S. Stein, J. Appl. Cryst. 13, 34 (1980).CrossRefGoogle Scholar
  24. 24.
    Some technical problems related to implementation of the correlation function analysis are critically reviewed in B. Goderis, H. Reynaers, M.H.J. Koch, V.B.F. Mathot, J. Polym. Sci. Part B 37, 1715 (1999).CrossRefGoogle Scholar
  25. 25.
    F.J. Balta-Calleja, C.G. Vonk, X-ray Scattering of Synthetic Polymers, Elsevier, Amsterdam, (1989).Google Scholar
  26. 26.
    The existence of such amorphous regions perturbed by the nearby crystalline surfaces was recently demonstrated for a binary blend of similar semirigid-chain aromatic polyester with TEM using selective staining: D.A. Ivanov, T. Pop, D. Yoon, A. Jonas, Macromolecules 35, 9813 (2002).CrossRefGoogle Scholar
  27. 27.
    W.H. Press et al. , Numerical Recipes in C, The Art of Scientific Computing, Plenum Press, New York (1988).Google Scholar
  28. 28.
    The code used for fitting SAXS curves with the generalized Hosemann model is available from D.A.I. on request.Google Scholar
  29. 29.
    M. Al-Hussein, G. Strobl, Eur. Phys. J. 6, 305 (2001).CrossRefGoogle Scholar
  30. 30.
    G.R. Strobl, M.J. Schneider, I.G. Voigt-Martin, J. Polym. Sci. Polym. Phys. Ed. 18, 1361 (1980).CrossRefGoogle Scholar
  31. 31.
    The presence of negative parts of the interface distribution function near the origin testifies that the curves were probably undercorrected for the density transition layers.Google Scholar
  32. 32.
    The second maximum in the interface distribution function corresponding to frame 274 is a barely visible shoulder.Google Scholar
  33. 33.
    B.J. Crist, J. Polym. Sci. Polym. Phys. Ed. 39, 2454 (2001).CrossRefGoogle Scholar
  34. 34.
    It is important to note that the degree of transformation by number, t, can behave differently from the linear crystallinity, \(\varphi_{c, \rm lin}\equiv\frac{L_c}{L_B}\), or bulk crystallinity by volume if crystal reorganization occurs on heating, i.e. if L c varies with temperature. In terms of the classical approach, the parameter t is equivalent to the surface-to-volume ratio, which could be obtained from Porod’s fits.Google Scholar
  35. 35.
    For large N used in the computations, the following inequality holds: \(I_{B} \gg I_{c}\), i.e. the total intensity is approximately proportional to the product AN (cf. Eqs. ([5], [A.8])). The decrease of A on heating does not signify that there is melting of entire stacks each containing N crystals. Rather, it means that the stack boundaries in this case are not invariant with temperature. Thus, in this model the fact that the stack height increases due to the evolution of h a(l) implies that grouping of crystals in stacks of N can be considered as purerly formal. As one of the reviewers noted, such image of the melting proccess is not conceptually trivial. In fact, the same result will be obtained if one would fix the stack height and vary N accordingly. The latter approach is, however, more difficult to realize practically.Google Scholar
  36. 36.
    Since for an infinite stack model the number of lamellae equals that of interlamellar amorphous layers, i.e. (1−t), one can quantify the evolution of amorphous regions by analyzing the functions \(\Delta h_{a,T}\). In this case, the integral \(\int\limits_{l_1 \;}^{ \l_2 \;}\Delta h_{a,T}(l) \mathrm{d}l \equiv \int\limits_{l_1 \;}^{ \l_2 \;}\left ((1-t) h_{a,T}(l)-h_{a,T_{\rm c}}(l) \right ) \mathrm{d} l\) gives the number fraction of amorphous regions ranging from l 1 to l 2 which disappears (if negative) or appears (if positive) by transformation t(T), where t(T) is defined with respect to the initial state, i.e. \(t(T_{\rm c}) = 0\).Google Scholar
  37. 37.
    Each isolated melting crystal evidently eliminates two adjacent amorphous regions.Google Scholar
  38. 38.
    R.K. Verma, B.S. Hsiao, Trends Polym. Sci. 4, 312 (1996).zbMATHGoogle Scholar
  39. 39.
    ATHAS Databank available online: http://web.utk.edu/ athas/databank/phenylen/ptt/ptt.html.Google Scholar
  40. 40.
    J.-M. Huang, F.C. Chang, J. Polym. Sci. Part B 38, 934 (2000).CrossRefGoogle Scholar
  41. 41.
    I.M. Ward, Mechanical Properties of Solid Polymers, Wiley Interscience, London(1971).Google Scholar
  42. 42.
    J. Brandrup, E.H. Immergut, Polymer Handbook, John Wiley & Sons, New York, (1989), third edition.Google Scholar
  43. 43.
    It should be noted that the compressibility does not appear to be a very material-sensitive parameter and reveals only a small variation when switching from rubbery to glassy polymers.Google Scholar
  44. 44.
    In this derivation the electron density of the stack surroundings, \(\rho_{\rm surroundings}\), was put to zero. Generally, a constant infinite background can always be safely subtracted from the model, since it generates the delta-function located at the origin, which cannot be detected experimentally. This substraction, obviously, does not affect the intra-stack electron density contrast.Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • D. A. Ivanov
    • 1
    Email author
  • S. Hocquet
    • 2
  • M. Dosiére
    • 2
  • M. H. J. Koch
    • 3
  1. 1.Laboratoire de Physique des Polyméres, CP 223Université Libre de BruxellesBrusselsBelgium
  2. 2.Laboratoire de Physicochimie des PolyméresUniversité de Mons-HainautMonsBelgium
  3. 3.European Molecular Biology Laboratory, Hamburg OutstationEMBL c/o DESYHamburgGermany

Personalised recommendations