The European Physical Journal E

, Volume 13, Issue 4, pp 345–351 | Cite as

Force between unlike star-polymers versus the solvent quality

  • F. Benzouine
  • M. BenhamouEmail author
  • M. Himmi


We re-examine here the computation of the effective force between two star-polymers A and B of different chemical nature, which are immersed in a common solvent. This force originates from the excluded-volume interactions and chemical segregation. We assume that the solvent quality may be different for the two unlike star-polymers, that is the solvent can be 1) a good solvent for A and B, 2) a good solvent for A and a \(\Theta \)-solvent for B, or 3) a \(\Theta \)-solvent for the two polymers. The purpose is a quantitative study of the effect of the solvent quality on the effective force, which is a function of the center-to-center distance. Calculations are achieved using the renormalization theory applied to the Edwards continuous model. We first show that, when the mutual interactions are present, the effective force decays as the inverse of distance, but with a universal amplitude depending on the solvent quality. Second, we demonstrate the existence of three kinds of forces related to situations 1), 2) and 3) described above, and give the third-order \( \epsilon \)-expansions (\(\epsilon = 4-d\), 4 is the critical dimension) of the corresponding amplitudes. These series can be resummed using the Borel-Leroy techniques to obtain the best three-dimensional values for the expected force amplitudes. Finally, this work must be regarded as a natural extension of a published one which dealt with the same problem, but where the solvent was assumed to be good for the two unlike star-polymers.


Polymer Quantitative Study Continuous Model Chemical Nature Natural Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.S. Grest, L.J. Fetters, J.H. Huang, D. Richter, Adv. Chem. Phys. XCIV, 6 (1996).Google Scholar
  2. 2.
    M. Daoud, J.P. Cotton, J. Phys. (Paris) 43, 531 (1982).Google Scholar
  3. 3.
    T.M. Birshtein, E.B. Zhulina, Polymer 25, 1453 (1984); T.M. Birshtein, E.B. Zhulina, O.V. Borisov, Polymer 27, 1078 (1986).CrossRefGoogle Scholar
  4. 4.
    C.H. Vlahos, K. Kosmas, Polymer 25, 1607 (1984).CrossRefGoogle Scholar
  5. 5.
    A. Miyake, K.F. Freed, Macromolecules 16, 1228 (1983).Google Scholar
  6. 6.
    K.F. Freed, J. Chem. Phys. 79, 6357 (1983).CrossRefGoogle Scholar
  7. 7.
    B. Duplantier, Renormalization and Conformal Invariance for Polymers, in Fundamental Problems in Statistical Mechanics VII, edited by H. van Beijeren (Elsevier Science Publishers B.V, 1990); U. Lehr, L. Schäfer, C. von Ferber, B. Duplantier, Nucl. Phys. 374, 473 (1990).zbMATHGoogle Scholar
  8. 8.
    A. Rey, J.J. Freire, J.G. de la Torre, Macromolecules 20, 342 (1987).Google Scholar
  9. 9.
    J. Batoulis, K. Kremer, Macromolecules 22, 531 (1989).Google Scholar
  10. 10.
    G. Grest, K. Kremer, T.A. Witten, Macromolecules 20, 1376 (1987).Google Scholar
  11. 11.
    D. Richter, B. Farago, L.J. Fetters, J.S. Huang, B. Ewen, Macromolecules 23, 1845 (1990).Google Scholar
  12. 12.
    M. Badia, M. Benhamou, A. Derouiche, J.-L. Bretonnet, Colloid Polym. Sci. 279, 763 (2001).CrossRefGoogle Scholar
  13. 13.
    C. von Ferber, A. Jusfi, C.N. Likos, H. Löwen, M. Watzlawek, Eur. Phys. J. E 2, 311 (2000).CrossRefGoogle Scholar
  14. 14.
    L. Millner et al. , Macromolecules 27, 3821 (1994); C.N. Likos et al. , Phys. Rev. Lett. 80, 4450 (1998); C.M. Marques, D. Izzo, T. Chariat, E. Mendes, Eur. Phys. J. B 3, 353 (1998).Google Scholar
  15. 15.
    T.A. Witten, P.A. Pincus, Macromolecules 19, 2509 (1986).Google Scholar
  16. 16.
    M. Benhamou, F. Benzouine, Eur. Phys. J. E 5, 275 (2001).CrossRefGoogle Scholar
  17. 17.
    J. des Cloizeaux, J. Phys. (Paris) 36, 281 (1975).Google Scholar
  18. 18.
    J. des Cloizeaux, G. Jannink, Polymers in Solution, (Oxford University Press, Oxford, 1990).Google Scholar
  19. 19.
    S.F. Edwards, Proc. Phys. Soc. (London) 85, 613 (1965).CrossRefzbMATHGoogle Scholar
  20. 20.
    M. Aubouy, Thesis, Paris IV-University (1995).Google Scholar
  21. 21.
    See, for instance, reference [7].Google Scholar
  22. 22.
    B. Duplantier, Phys. Rev. Lett. 57, 941 (1986).CrossRefMathSciNetGoogle Scholar
  23. 23.
    C. von Ferber, Y. Holovatch, Condens. Matter Phys. 10, 9 (1997); 5, 117 (2002).zbMATHGoogle Scholar
  24. 24.
    B. Duplantier, J. Stat. Phys. 54, 581 (1988); D.J. Wallace, R.K.P. Zia, J. Phys. C 8, 839 (1975).Google Scholar
  25. 25.
    J.L. Cardy, H.W. Hamber, Phys. Rev. Lett. 45, 499 (1980).CrossRefMathSciNetGoogle Scholar
  26. 26.
    B. Nienhuis, Phys. Rev. Lett. 49, 1062 (1982); J. Phys. Stat. Phys. 34, 731 (1984).CrossRefMathSciNetGoogle Scholar
  27. 27.
    J. des Cloizeaux, J. Phys. (Paris) 41, 223 (1980).Google Scholar
  28. 28.
    M. Benhamou, G. Mahoux, J. Phys. (Paris) 47, 559 (1986).Google Scholar
  29. 29.
    M. Benhamou, Thesis, Paris XI-University (1987).Google Scholar
  30. 30.
    P.-G. de Gennes, Phys. Lett. A 38, 339 (1972); Scaling Concepts in Polymer Physics (Cornell University Press, 1979).CrossRefGoogle Scholar
  31. 31.
    C. Itzykson, J.M. Drouffe, Statistical Field Theory, Vols. 1 and 2 (Cambridge University Press, 1989).Google Scholar
  32. 32.
    J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon Press, Oxford, 1989).Google Scholar
  33. 33.
    D. Broseta, L. Leibler, J.F. Joanny, Macromolecules 20, 1935 (1987); J.F. Joanny, L. Leibler, R. Ball, J. Chem. Phys. 81, 4640 (1984).Google Scholar
  34. 34.
    L. Schäfer, U. Lehr, C. Kappeler, J. Phys. I 1, 211 (1991).CrossRefGoogle Scholar
  35. 35.
    I.S. Gradshteyn, I.M. Ryzik, Table of Integrals, Series and Products (Academic Press, New York, 1980).Google Scholar
  36. 36.
    Description of the Borel-Leroy resummation techniques can be found in reference [31] or [32].Google Scholar
  37. 37.
    C.N. Likos, H. Löwen, M. Watzlawek, B. Abbas, O. Jucknischke, J. Allgaier, D. Richter, Phys. Rev. Lett. 80, 4450 (1998).CrossRefGoogle Scholar
  38. 38.
    It is important to point out that these fixed values are obtained for infinitely long chains, that is \(N\rightarrow \infty \). For finite values of the molecular weight, however, the renormalized coupling constant g AB tends to its fixed value g S * more slowly than g AA and g BB. More precisely, as shown in reference [33], one has for high but finite molecular weight M: \(g_{AA}\rightarrow g_S^{*}+{\rm const} \times M^{-\Delta_1}\), \(g_{BB}\rightarrow g_S^{*}+{\rm const} \times M^{-\Delta_1}\), \(g_{AB}\rightarrow g_S^{*}+{\rm const} \times M^{-\Delta_2}\), where \(\Delta_1\) and \(\Delta _2>\Delta_1\) are two known cross-over exponents. In fact, these exponents govern corrections to the leading scaling behavior of the osmotic pressure. In particular, the exponent \(\Delta_2\) characterizes the chemical mismatch correction to the des Cloizeaux’ law of the osmotic pressure.Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Faculté des Sciences Ben M’sikLaboratoire de Physique des Polyméres et Phénoménes CritiquesCasablancaMorocco

Personalised recommendations