The European Physical Journal E

, Volume 13, Issue 3, pp 309–319 | Cite as

Physical properties of aqueous suspensions of goethite (\(\alpha\)-FeOOH) nanorods

Part II: In the nematic phase
  • B. J. Lemaire
  • P. DavidsonEmail author
  • D. Petermann
  • P. Panine
  • I. Dozov
  • D. Stoenescu
  • J. P. Jolivet


At volume fractions larger than 8.5%, aqueous suspensions of lath-like goethite (\(\alpha\)-FeOOH) nanorods form a lyotropic nematic phase. In this article, we first discuss the nematic ordering within statistical-physics models of the isotropic/nematic phase transition. We then describe the influence of a magnetic field on the nematic phase. Because the nanorods bear permanent magnetic moments, the nematic suspensions have dipolar order and very low Frederiks thresholds. Moreover, the nematic phase aligns parallel to a small magnetic field but realigns perpendicular to a high field because of a competition between the permanent moments of the nanorods and their negative anisotropy of magnetic susceptibility. This magneto-optical study of the nematic phase is completely consistent with that of the isotropic phase of the same suspensions published in Part I (this issue, p. 291). Besides, we demonstrate the field-induced biaxiality of a nematic single domain aligned perpendicular to the field. We also describe here preliminary experiments where an a.c. electric field is applied to the nematic phase. Both field amplitude and frequency were found to control the alignment direction and homeotropic-to-planar alignment transitions were observed. From this data, simple models were used to estimate some physical constants of the nematic phase.


Magnetic Field Phase Transition Goethite Aqueous Suspension Single Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    a) P. Davidson, P. Batail, J.C.P. Gabriel, J. Livage, C. Sanchez, C. Bourgaux, Prog. Polym. Sci. 22, 913 (1997); b) J.C.P. Gabriel, P. Davidson, Adv. Mater. 12, 9 (2000); c) J.C.P. Gabriel, P. Davidson, Top. Curr. Chem. 226, 119 (2003).CrossRefGoogle Scholar
  2. 2.
    B.J. Lemaire, P. Davidson, J. Ferré, J.P. Jamet, P. Panine, I. Dozov, J.P. Jolivet, Phys. Rev. Lett. 88, 125507 (2002).CrossRefGoogle Scholar
  3. 3.
    B.J. Lemaire, P. Davidson, J. Ferré, J.P. Jamet, D. Petermann, P. Panine, I. Dozov, J.P. Jolivet, this issue, p. 291.Google Scholar
  4. 4.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd edition (Clarendon, Oxford, U.K., 1993).Google Scholar
  5. 5.
    L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949).Google Scholar
  6. 6.
    G.J. Vroege, H.N.W. Lekkerkerker, Rep. Prog. Phys. 55, 1241 (1992).CrossRefGoogle Scholar
  7. 7.
    P. Bolhuis, D. Frenkel, J. Chem. Phys. 106, 666 (1997).CrossRefGoogle Scholar
  8. 8.
    S.J. Lee, J. Chem. Phys. 87, 4972 (1987).CrossRefGoogle Scholar
  9. 9.
    A. Stroobants, H.N.W. Lekkerkerker, T. Odijk, Macromolecules 19, 2232 (1986).Google Scholar
  10. 10.
    K. Coper, H. Freundlich, Trans. Faraday Soc. 33, 348 (1937).Google Scholar
  11. 11.
    P. Davidson, C. Bourgaux, L. Schoutteten, P. Sergot, C. Williams, J. Livage, J. Phys. II 5, 1577 (1995).CrossRefGoogle Scholar
  12. 12.
    P. Davidson, D. Petermann, A.M. Levelut, J. Phys. II 5, 113 (1995).CrossRefGoogle Scholar
  13. 13.
    S. Fraden, G. Maret, D.L.D. Caspar, Phys. Rev. E 48, 2816 (1993).CrossRefGoogle Scholar
  14. 14.
    W.H. de Jeu, Physical properties of Liquid Crystalline Materials (Gordon and Breach, New York, 1980) Chapt. 5.1.Google Scholar
  15. 15.
    W. Maier, G. Meier, Z. Naturforsch. 16a, 262 (1961).Google Scholar
  16. 16.
    S. Fraden, A.J. Hurd, R.B. Meyer, M. Cahoon, D.L.D. Caspar, J. Phys. (Paris), Colloq. 46, 85 (1985).Google Scholar
  17. 17.
    X. Commeinhes, P. Davidson, C. Bourgaux, J. Livage, Adv. Mater. 9, 900 (1997).Google Scholar
  18. 18.
    a) Y. Poggi, J.C. Filippini, Phys. Rev. Lett. 39, 150 (1977); b) I. Lelidis, M. Nobili, G. Durand, Phys. Rev. E 48, 3818 (1993).CrossRefGoogle Scholar
  19. 19.
    S. Lamarque-Forget, O. Pelletier, I. Dozov, P. Davidson, P. Martinot-Lagarde, J. Livage, Adv. Mater. 12, 1267 (2000).CrossRefGoogle Scholar
  20. 20.
    D. Demus, J.W. Goodby, G.W. Gray, H.W. Spiess, V. Vill, Handbook of Liquid Crystals, Fundamentals, Vol. 1 (Wiley-VCH, Weinheim, Germany, 1998) Chapt. 4.Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • B. J. Lemaire
    • 1
  • P. Davidson
    • 1
    Email author
  • D. Petermann
    • 1
  • P. Panine
    • 2
  • I. Dozov
    • 3
  • D. Stoenescu
    • 3
  • J. P. Jolivet
    • 4
  1. 1.Laboratoire de Physique des Solides, UMR CNRS 8502, Bâtiment 510Université Paris-SudOrsayFrance
  2. 2.European Synchrotron Radiation FacilityGrenobleFrance
  3. 3.NemopticMagny-les-HameauxFrance
  4. 4.Laboratoire de Chimie de la Matiére Condensée, UMR CNRS 7574Université Paris 6ParisFrance

Personalised recommendations