Advertisement

The European Physical Journal E

, Volume 13, Issue 4, pp 335–344 | Cite as

Effects of counterion fluctuations in a polyelectrolyte brush

  • C. D. SantangeloEmail author
  • A. W. C. Lau
Article

Abstract.

We investigate the effect of counterion fluctuations in a single polyelectrolyte brush in the absence of added salt by systematically expanding the counterion free energy about Poisson-Boltzmann mean-field theory. We find that for strongly charged brushes, there is a collapse regime in which the brush height decreases with increasing charge on the polyelectrolyte chains. The transition to this collapsed regime is similar to the liquid-gas transition, which has a first-order line terminating at a critical point. We find that, for monovalent counterions, the transition is discontinuous in theta solvent, while for multivalent counterions, the transition is generally continuous. For collapsed brushes, the brush height is not independent of grafting density as it is for osmotic brushes, but scales linear with it.

Keywords

Free Energy Polyelectrolyte Chain Polyelectrolyte Brush Multivalent Counterion Brush Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.Yu. Groberg, T.T. Nguyen, B.I. Shklovskii, Rev. Mod. Phys. 74, 329 (2002).CrossRefGoogle Scholar
  2. 2.
    Yan Levin, Rep. Prog. Phys. 65, 1577 (2002).CrossRefGoogle Scholar
  3. 3.
    A.G. Moreira, Roland R. Netz, in Electrostatic Effects in Soft Matter and Biophyiscs, edited by C. Holm, P. Kekicheff, R. Podgornik (Kluwer Academic Publ., Boston, 2001).Google Scholar
  4. 4.
    J.N. Israelachvili, Intermolecular and Surface Forces (Academic Press Inc., San Diego, 1992).Google Scholar
  5. 5.
    B.-Y Ha, A.J. Liu, Phys. Rev. Lett. 79, 1289 (1997); 81, 1011 (1998); Phys. Rev. E 58, 6281 (1998); 60, 803 (1999).CrossRefGoogle Scholar
  6. 6.
    P. Pincus, S.A. Safran, Europhys. Lett. 42, 103 (1998); D.B. Lukatsky, S.A. Safran, Phys. Rev. E 60, 5848 (1999).CrossRefGoogle Scholar
  7. 7.
    A.W.C. Lau, P. Pincus, Phys. Rev. E series 66, 041501 (2002).CrossRefGoogle Scholar
  8. 8.
    R. Golestanian, M. Kardar, T.B. Liverpool, Phys. Rev. Lett. 82, 4456 (1999); R. Golestanian, T.B. Liverpool, Phys. Rev. E 66, 051802 (2002).CrossRefGoogle Scholar
  9. 9.
    H. Schiessel, P. Pincus, Macromolecules 31, 7953 (1998).CrossRefGoogle Scholar
  10. 10.
    G. Ariel, D. Andelman, Europhys. Lett. 61, 67 (2003); Phys. Rev. E 67, 011805 (2003).CrossRefGoogle Scholar
  11. 11.
    S.J. Miklavic, S. Marcelja, J. Phys. Chem. 92, 6718 (1988).Google Scholar
  12. 12.
    S. Misra, S. Varanasi, P.P. Varanasi, Macromolecules 22, 5173 (1989).Google Scholar
  13. 13.
    P. Pincus, Macromolecules series 24, 2912 (1991).Google Scholar
  14. 14.
    R.S. Ross, P. Pincus, Macromolecules series 25, 2177 (1992); E.B. Zhulina, T.M. Birshtein, O.V. Borisov, J. Phys. II 2, 63 (1992).Google Scholar
  15. 15.
    O.V. Borisov, T.M. Birshtein, E.B. Zhulina, J. Phys. II 1, 521 (1991); R. Israels, F.A.M. Leermakers, G.J. Fleer, E.B. Zhulina, Macromolecules 27, 3249 (1994); O.V. Borisov, E.B. Zhulina, T.M. Birshtein, Macromolecules series 27, 4795 (1994);CrossRefzbMATHGoogle Scholar
  16. 16.
    E.B. Zhulina, O.V. Borisov, J. Chem. Phys. series 107, 5952 (1997); E.B. Zhulina, J. Klein Wolterink, O.V. Borisov, Macromolecules series 33, 4945 (2000).CrossRefGoogle Scholar
  17. 17.
    J. Wittmer, J.-F. Joanny, Macromolecules 26, 2691 (1993).Google Scholar
  18. 18.
    C. Amiel, M. Sikka, J.W. Schneider jr., Y.-H. Tsao, M. Tirrell, J.W. Mays, Macromolecules 28, 3125 (1995); T.W. Kelley, P.A. Schorr, K.P. Johnson, M. Tirrell, C.D. Frisbie, Macromolecules 31, 4297 (1998)Google Scholar
  19. 19.
    Y. Mir, P. Auvroy, L. Auvray, Phys. Rev. Lett. 75, 2863 (1995).CrossRefGoogle Scholar
  20. 20.
    P. Guenoun, A. Schlachli, D. Sentenac, J.M. Mays, J.J. Benattar, Phys. Rev. Lett. 74, 3628 (1995).CrossRefGoogle Scholar
  21. 21.
    H. Ahrens, S. Forster, C.A. Helm, Macromolecules 30, 8447 (1997); Phys. Rev. Lett. 81, 4172 (1998).CrossRefGoogle Scholar
  22. 22.
    S. Alexander, J. Phys. (Paris) 38, 983 (1997); P.G. de Gennes, Macromolecules 13, 1069 (1980).Google Scholar
  23. 23.
    M.N. Tamashiro, E. Hernandez-Zapata, P.A. Schorr, M. Balastre, M. Tirrell, P. Pincus, J. Chem. Phys. series 115, 1960 (2001); M. Balastre, F. Li, P. Schorr, J. Yang, J. Mays, M. Tirrell, Macromolecules series 35, 9480 (2002).CrossRefGoogle Scholar
  24. 24.
    P.A. Schorr, PhD Thesis, University of Minnesota (2000).Google Scholar
  25. 25.
    D. Bendejacq, PhD Thesis, Université Paris 6 (2002).Google Scholar
  26. 26.
    F.S. Csajka, C. Seidel, Macromolecules series 4, 505 (2001); C. Seidel, Macromolecules 36, 2536 (2003).CrossRefGoogle Scholar
  27. 27.
    F.S. Csajka, R.R. Netz, C. Seidel, J.-F. Joanny, Eur. Phys. J. E series 4, 505 (2001).CrossRefGoogle Scholar
  28. 28.
    L.D. Landau, E.M. Lifshitz, Statistical Physics, 3rd edition, revised and enlarged by E.M. Lifshitz, L.P. Pitaevskii (Pergamon, New York, 1980).Google Scholar
  29. 29.
    R.R. Netz, H. Orland, Eur. Phys. J. E series 1, 67 (2000).CrossRefGoogle Scholar
  30. 30.
    A.W.C. Lau, D.B. Lukatsky, P. Pincus, S. Safran, Phys. Rev. E 5, 051502 (2002).CrossRefGoogle Scholar
  31. 31.
    P.-G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY, 1979).Google Scholar
  32. 32.
    A.M. Skvortsov, I.V. Pavlushkov, A.A. Gorbunov, Y.B. Zhulina, O.V. Borisov, V.A. Pryamitsyn, Polym. Sci. 30, 1706 (1988).CrossRefGoogle Scholar
  33. 33.
    A. Halperin, J. Phys. (Paris) 49, 547 (1988); Y.B. Zhulina, V.A. Pryamitsyn, O.V. Borisov, Polym. Sci. 31, 205 (1989); E.B. Zhulina, O.V. Borisov, V.A. Pryamitsyn, T.M. Birshtein, Macromolecules series 24, 140 (1991); D.R.M. Williams, J. Phys. II 3, 1313 (1993).Google Scholar
  34. 34.
    L.S. Brown, L.G. Yaffe, Phys. Rep. 340, 1 (2001).CrossRefzbMATHGoogle Scholar
  35. 35.
    G. Arfken, Mathematical Methods for Physicists (Academic Press, San Diego, 1996).Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations