The European Physical Journal E

, Volume 12, Issue 2, pp 333–345 | Cite as

Phase behavior and structure formation of hairy-rod supramolecules

  • A. Subbotin
  • R. Stepanyan
  • M. Knaapila
  • O. Ikkala
  • G. ten Brinke
Article

Abstract.

Phase behavior and microstructure formation of rod and coil molecules, which can associate to form hairy-rod polymeric supramolecules, are addressed theoretically. Association induces considerable compatibility enhancement between the rod and coil molecules and various microscopically ordered structures can appear in the compatibility region. The equilibria between microphase-separated states, the coil-rich isotropic liquid and the rod-rich nematic are discussed in detail. In the regime where hairy-rod supramolecules with a high grafting density appear as a result of the association, three phase diagram types are possible depending on the value of the association energy. In the low grafting density regime only the lamellar microstructure is proven to be stable.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Ballauff, Angew. Chem., Int. Ed. Engl. 28, 253 (1989).Google Scholar
  2. 2.
    H. Menzel, in Polymer Materials Encyclopedia, edited by J.C. Salamone (CRC Press, Boca Raton, Fla, 1996) p. 2916.Google Scholar
  3. 3.
    G. Wegner, Thin Solid Films 216, 105 (1992).CrossRefGoogle Scholar
  4. 4.
    O. Ikkala, G. ten Brinke, in Handbook of Advanced Electronic and Photonic Materials and Devices, Part 8, Conducting Polymers, edited by H.S. Nalwa (Academic Press, San Diego, 2000) Chapt. 5, pp. 185-208.Google Scholar
  5. 5.
    M. Ballauff, Makromol. Chem. 7, 407 (1986).CrossRefGoogle Scholar
  6. 6.
    P. Galda, D. Kistner, A. Martin, M. Ballauff, Macromolecules 26, 1595 (1993).Google Scholar
  7. 7.
    M. Steuer, M. Hörth, M. Ballauff, J. Polym. Sci. A 31, 1609 (1993).CrossRefGoogle Scholar
  8. 8.
    M. Ballauff, G.F. Schmidt, Makromol. Chem. 8, 93 (1987).CrossRefGoogle Scholar
  9. 9.
    R. Stepanyan, Macromolecules 36, 3758 (2003).CrossRefGoogle Scholar
  10. 10.
    J.-M. Lehn, Supramolecular Chemistry (VCH, Weinheim, 1995).Google Scholar
  11. 11.
    F. Vögtle, Supramolecular Chemistry (Wiley, Chichester, 1993).Google Scholar
  12. 12.
    S.I. Stupp, Science 276, 384 (1997).CrossRefGoogle Scholar
  13. 13.
    M. Antonietti, C. Burger, A.F. Thünemann, Trends Polym. Sci. 5, 262 (1997).Google Scholar
  14. 14.
    G. ten Brinke, O. Ikkala, Trends Polym. Sci. 5, 213 (1997).Google Scholar
  15. 15.
    J. Ruokolainen, Science 280, 557 (1998).CrossRefGoogle Scholar
  16. 16.
    A.F. Thünemann, Prog. Polym. Sci. 14, 1473 (2002).CrossRefGoogle Scholar
  17. 17.
    M. Antonietti, S. Henke, A.F. Thünemann, Adv. Mater. 8, 41 (1996).Google Scholar
  18. 18.
    O. Ikkala, G. ten Brinke, Science 295, 2407 (2002).CrossRefGoogle Scholar
  19. 19.
    M. Knaapila, accepted for publication in J. Phys. Chem. B.Google Scholar
  20. 20.
    P.J. Flory, Macromolecules 11, 1138 (1978).Google Scholar
  21. 21.
    A. Abe, M. Ballauff, in Liquid Crystallinity in Polymers, edited by A. Ciferri (VCH Publishers, New York, 1991) Chapt. 4, pp. 131-167.Google Scholar
  22. 22.
    A.R. Khokhlov, in Liquid Crystallinity in Polymers, edited by A. Ciferri (VCH Publishers, New York, 1991) Chapt. 3, pp. 97-129.Google Scholar
  23. 23.
    A.N. Semenov, A.R. Khokhlov, Sov. Usp. Fiz. Nauk 156, 427 (1988).Google Scholar
  24. 24.
    P.J. Flory, Adv. Polym. Sci. 59, 1 (1984).Google Scholar
  25. 25.
    M. Ballauff, J. Polym. Sci. B 25, 739 (1987).CrossRefGoogle Scholar
  26. 26.
    A.N. Semenov, M. Rubinstein, Macromolecules 31, 1373 (1998).CrossRefGoogle Scholar
  27. 27.
    I.Y. Erukhimovich, Sov. Phys. JETP 81, 553 (1995).Google Scholar
  28. 28.
    H.J. Angerman, G. ten Brinke, Macromolecules 32, 6813 (1999).CrossRefGoogle Scholar
  29. 29.
    E. Dormidontova, G. ten Brinke, Macromolecules 31, 2649 (1998).CrossRefGoogle Scholar
  30. 30.
    A. Subbotin, M. Saariaho, O. Ikkala, G. ten Brinke, Macromolecules 33, 3447 (2000).CrossRefGoogle Scholar
  31. 31.
    R. Stepanyan, A. Subbotin, G. ten Brinke, Macromolecules 35, 5640 (2002).CrossRefGoogle Scholar
  32. 32.
    A.N. Semenov, Macromolecules 26, 2273 (1993).Google Scholar
  33. 33.
    L. Leibler, Macromolecules 13, 1602 (1980).Google Scholar
  34. 34.
    A.N. Semenov, Macromolecules 25, 4967 (1992).Google Scholar
  35. 35.
    S.T. Milner, Z.G. Wang, T.A. Witten, Macromolecules 22, 489 (1989).Google Scholar
  36. 36.
    A.Y. Grosberg, A.R. Khokhlov, Statistical Physics of Macromolecules (American Institute of Physics, New York, 1994).Google Scholar
  37. 37.
    P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1985).Google Scholar
  38. 38.
    A.N. Semenov, I.A. Nyrkova, A.R. Khokhlov, Macromolecules 28, 7491 (1995).Google Scholar
  39. 39.
    M. Knaapila, Appl. Phys. Lett. 81, 1489 (2002).CrossRefGoogle Scholar
  40. 40.
    M. Knaapila, Synth. Met. 121, 1257 (2001).CrossRefGoogle Scholar
  41. 41.
    H. Kosonen, Synth. Met. 121, 1277 (2001).CrossRefGoogle Scholar
  42. 42.
    H. Kosonen, Macromolecules 33, 8671 (2000).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • A. Subbotin
    • 1
    • 2
  • R. Stepanyan
    • 1
  • M. Knaapila
    • 3
  • O. Ikkala
    • 3
  • G. ten Brinke
    • 1
    • 3
  1. 1.Department of Polymer Science and Material Science CenterUniversity of GroningenGroningenThe Netherlands
  2. 2.Institute of Petrochemical SynthesisRussian Academy of SciencesMoscow Russia
  3. 3.Department of Engineering Physics and MathematicsHelsinki University of TechnologyEspooFinland

Personalised recommendations