Advertisement

The European Physical Journal E

, Volume 12, Issue 2, pp 283–290 | Cite as

Solid-supported lipid multilayers: Structure factor and fluctuations

  • D. Constantin
  • U. Mennicke
  • C. Li
  • T. Salditt
Article

Abstract.

We present a theoretical description of the thermal fluctuations in a solid-supported stack of lipid bilayers, for the case of vanishing surface tension \(\gamma = 0\) and in the framework of continuous smectic elasticity. The model is successfully used to model the reflectivity profile of a thin (16 bilayers) DMPC sample under applied osmotic pressure and the diffuse scattering from a thick (800 bilayers) stack. We compare our model to previously existing theories.

Keywords

Lipid Surface Tension Structure Factor Lipid Bilayer Osmotic Pressure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Katsaras, V.A. Raghunathan, Aligned lipid-water systems, in Lipid Bilayers: Structure and Interactions, edited by J. Katsaras, T. Gutberlet (Springer, 2000).Google Scholar
  2. 2.
    T. Salditt, C. Li, A. Spaar, U. Mennicke, Europhys. J. E 7, 105 (2002).Google Scholar
  3. 3.
    Y. Lyatskaya, Y. Liu, S. Tristram-Nagle, J. Katsaras, J.F. Nagle, Phys. Rev. E 63, 011907 (2000).ADSCrossRefGoogle Scholar
  4. 4.
    B. Bechinger, J. Membrane Biol. 156, 197 (1997).CrossRefGoogle Scholar
  5. 5.
    A. Caillé, C. R. Acad. Sci. Paris, Sér. B 274, 891 (1972).Google Scholar
  6. 6.
    J. Als-Nielsen, J.D. Litster, D. Birgenau, M. Kaplan, C.R. Safinya, A. Lindgard-Andersen, S. Mathiesen, Phys. Rev. B 22, 312 (1980).ADSCrossRefGoogle Scholar
  7. 7.
    C.R. Safinya, D. Roux, G.S. Smith, S.K. Sinha, P. Dimon, N.A. Clark, A.-M. Bellocq, Phys. Rev. Lett. 57, 2718 (1986).ADSCrossRefGoogle Scholar
  8. 8.
    C.R. Safinya, D. Roux, G.S. Smith, Phys. Rev. Lett. 62, 1134 (1989).ADSCrossRefGoogle Scholar
  9. 9.
    F. Nallet, R. Laversanne, D. Roux, J. Phys II 3, 487 (1993).Google Scholar
  10. 10.
    R. Zhang, R.M. Sutter, J.F. Nagle, Phys. Rev. E 50, 5047 (1994).ADSCrossRefGoogle Scholar
  11. 11.
    J.F. Nagle, R. Zhang, S. Tristram-Nagle, W. Sun, H.I. Petrache, R.M. Suter, Biophys. J. 70, 1419 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    G. Pabst, M. Rappolt, H. Amenitsch, P. Laggner, Phys. Rev. E 62, 4000 (2000).ADSCrossRefGoogle Scholar
  13. 13.
    R. Hołyst, Phys. Rev. A 44, 3692 (1991).ADSCrossRefGoogle Scholar
  14. 14.
    A.N. Shalaginov, V.P. Romanov, Phys. Rev. E 48, 1073 (1993).ADSCrossRefGoogle Scholar
  15. 15.
    N. Lei, C.R. Safinya, R.F. Bruinsma, J. Phys. II 5, 1155 (1995)Google Scholar
  16. 16.
    E.A.L. Mol, J.D. Shindler, A.N. Shalaginov, W.H. de Jeu, Phys. Rev. E 54, 536 (1996).ADSCrossRefGoogle Scholar
  17. 17.
    P. Oswald, P. Pieranski, The Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (in French), (CPI, Paris, 2002).Google Scholar
  18. 18.
    D.K.G. de Boer, Phys. Rev. E 59, 1880 (1999).ADSCrossRefGoogle Scholar
  19. 19.
    V.P. Romanov, S.V. Ul’yanov, Phys. Rev. E 66, 061701 (2002).ADSCrossRefGoogle Scholar
  20. 20.
    A. Poniewierski, R. Hołyst, Phys. Rev. B 47, 9840 (1993).ADSCrossRefGoogle Scholar
  21. 21.
    S.A. Safran, Adv. Phys. 48, 395 (1999).ADSCrossRefGoogle Scholar
  22. 22.
    W. Helfrich, Z. Naturforsch. A 33, 305 (1978).ADSCrossRefGoogle Scholar
  23. 23.
    T. Salditt, C. Münster, J. Lu, M. Vogel, W. Fenzl, A. Souvorov, Phys. Rev. E 60, 7285 (1999).ADSCrossRefGoogle Scholar
  24. 24.
    S.K. Sinha, E.B. Sirota, S. Garoff, H.B. Stanley, Phys. Rev. B 38, 2297 (1988).ADSCrossRefGoogle Scholar
  25. 25.
    L. Perino-Gallice, G. Fragneto, U. Mennicke, T. Salditt, F. Rieutord, Europhys. J. E 8, 275 (2002).Google Scholar
  26. 26.
    J. Als-Nielsen, D. McMorrow, Elements of Modern X-Ray Physics (Wiley, Chichester, 2001).Google Scholar
  27. 27.
    U. Mennicke, D. Constantin, T. Salditt, in preparation.Google Scholar
  28. 28.
    U. Mennicke, T. Salditt, Langmuir 18, 8172 (2002).CrossRefGoogle Scholar
  29. 29.
    The data was obtained from the web site of the Membrane Biophysics Laboratory at the Brock University in Canada: http://aqueous.labs.brocku.ca/osfile.html. The value for the osmotic pressure induced by a PEG 20000 solution at 3.6 wt. % is only available at \(20^{\circ}\)C as \(1.4 10^{4} \gtrsim{Pa}\). At \(40^{\circ}\)C, temperature at which the experiments were performed, we estimate that the pressure is lower by about 10 to 20%, by using the temperature dependence of PEG 8000 solutions (available on the same site).Google Scholar
  30. 30.
    S.K. Sinha, J. Phys. III 4, 1543 (1994).Google Scholar
  31. 31.
    T. Salditt, T.H. Metzger, J. Peisl, Phys. Rev. Lett. 73, 2228 (1994)ADSCrossRefGoogle Scholar
  32. 32.
    T. Salditt, M. Vogel, W. Fenzl, Phys. Rev. Lett. 90, 178101 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Institut für RöntgenphysikGöttingenGermany

Personalised recommendations