The European Physical Journal E

, Volume 12, Issue 1, pp 101–110 | Cite as

Viscoelastic dynamics of polymer thin films and surfaces

  • S. Herminghaus
  • K. Jacobs
  • R. Seemann


The strain relaxation behavior in a viscoelastic material, such as a polymer melt, may be strongly affected by the proximity of a free surface or mobile interface. In this paper, the viscoelastic surface modes of the material are discussed with respect to their possible influence on the freezing temperature and dewetting morphology of thin polymer films. In particular, the mode spectrum is connected with mode coupling theory assuming memory effects in the melt. Based on the idea that the polymer freezes due to these memory effects, surface melting is predicted. As a consequence, the substantial shift of the glass transition temperature of thin polymer films with respect to the bulk is naturally explanied. The experimental findings of several independent groups can be accounted for quantitatively, with the elastic modulus at the glass transition temperature as the only fitting parameter. Finally, a simple model is put forward which accounts for the occurrence of certain generic dewetting morphologies in thin liquid polymer films. It demonstrates that by taking into account the viscoelastic properties of the film, a morphological phase diagram may be derived which describes the observed structures of dewetting fronts. It is demonstrated that dewetting morphologies may also serve to determine nanoscale rheological properties of liquids.


Glass Transition Temperature Memory Effect Mode Coupling Viscoelastic Material Relaxation Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Doi, S.F. Edwards, Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986).Google Scholar
  2. 2.
    P.-G. de Gennes, Scaling Concepts in Polymer Physics, 4th edition (Cornell Univirsity Press, Ithaca, NY, 1991).Google Scholar
  3. 3.
    G. Strobl, The Physics of Polymers (Springer, Berlin, 1996).Google Scholar
  4. 4.
    N.F. Fatkullin, R. Kimmich, M. Kroutieva, J. Exp. Theor. Phys. 91, 150 (2000).CrossRefGoogle Scholar
  5. 5.
    L.D. Landau, E.M. Lifshitz, Theory of Elasticity, Vol. VII (Butterworth, London, 1995).Google Scholar
  6. 6.
    L. Landau, E.M. Lifshitz, Hydrodynamics, Vol. VI (Butterworth, London, 1995).Google Scholar
  7. 7.
    S. Herminghaus, Eur. Phys. J. E 8, 237 (2002).Google Scholar
  8. 8.
    H. Kim, Phys. Rev. Lett. 90, 068302 (2003).CrossRefGoogle Scholar
  9. 9.
    J.L. Keddie, R.A.L. Jones, R.A. Cory, Europhys. Lett. 27, 59 (1994).Google Scholar
  10. 10.
    J.A. Forrest, J. Mattsson, Phys. Rev. E 61, R53 (2000).Google Scholar
  11. 11.
    J. Mattsson, J.A. Forrest, L. Börgesson, Phys. Rev. E 62, 5187 (2000).CrossRefGoogle Scholar
  12. 12.
    P.-G. de Gennes, Europ. Phys. J. E 2, 201 (2000).CrossRefGoogle Scholar
  13. 13.
    K. Dalnoki-Veress, J.A. Forrest, P.-G. de Gennes, J.R. Dutcher, J. Phys. (Paris) 10, 221 (2000).Google Scholar
  14. 14.
    D. Long, Eur. Phys. J. E 8, 245 (2002).Google Scholar
  15. 15.
    J. Baschnagel, Eur. Phys. J. E 8, 247 (2002).Google Scholar
  16. 16.
    P.-G. de Gennes, C. R. Acad. Sci. Paris 1/IV, 1179 (2000).Google Scholar
  17. 17.
    S. Herminghaus, K. Jacobs, R. Seemann, Eur. Phys. J. E, 5, 531 (2001).Google Scholar
  18. 18.
    J.A. Forrest, K. Dalnoki-Veress, Adv. Colloid Interface Sci. 94, 167 (2001).CrossRefGoogle Scholar
  19. 19.
    J.A. Torres, P.F. Nealey, J.J. de Pablo, Phys. Rev. Lett. 85, 3221 (2000).CrossRefGoogle Scholar
  20. 20.
    J.A. Forrest, The role of free surfaces in the glass transition in thin films, oral presentation at this workshop.Google Scholar
  21. 21.
    W. Götze, L. Sjögren, Rep. Prog. Phys. 55, 241 (1992).CrossRefGoogle Scholar
  22. 22.
    W. Götze, Th. Voigtmann, Phys. Rev. E 61, 4133 (2000).CrossRefGoogle Scholar
  23. 23.
    W. Götze, L. Sjögren, J. Math. Anal. Appl. 195, 230 (1995).CrossRefMathSciNetGoogle Scholar
  24. 24.
    The memory kernel discussed here is conceptually different from the memory function of stress, as discussed, e.g., in the context of Lodge liquids [3].Google Scholar
  25. 25.
    P.E. Rouse, J. Chem. Phys. 21, 1272 (1953).Google Scholar
  26. 26.
    G. Ronca, J. Chem. Phys. 79, 1031 (1983).CrossRefGoogle Scholar
  27. 27.
    It should be noted, however, that the equation derived by Ronca is not a mode coupling equation per se. Its memory kernel depends explicitly on time, whereas in mode coupling theory, it depends on time only via \({\phi}(t)\). It is not clear yet whether this difference is essential in the case of strain fields.Google Scholar
  28. 28.
    J.H. Kim, J. Jang, W.-Ch. Zin, Langmuir 16, 4064 (2000), and references therein.CrossRefGoogle Scholar
  29. 29.
    G. Eckert, PhD Thesis, University of Ulm (1997).Google Scholar
  30. 30.
    O.K. Tsui, T.P. Russell, C.J. Hawker, Macromolecules 34, 5535 (2001).CrossRefGoogle Scholar
  31. 31.
    D.S. Fryer, Macromolecules 34, 5627 (2001).CrossRefGoogle Scholar
  32. 32.
    J.L. Keddie, R.A.L. Jones, R.A. Cory, Faraday Discuss. 98, 219 (1994).Google Scholar
  33. 33.
    J.L. Keddie, R.A.L. Jones, J. Isr. Chem. Soc. 35, 21 (1995).Google Scholar
  34. 34.
    J.H. van Zanten, W.E. Wallace, W. Wu, Phys. Rev. E 53, R2053 (1996).Google Scholar
  35. 35.
    D.S. Fryer, P.F. Nealey, J.J. de Pablo, Macromolecules 33, 6439 (2000).CrossRefGoogle Scholar
  36. 36.
    Jae Hyun Kim, Jyongsik Jang, Wang-Cheol Zin, Langmuir 17, 2703 (2001).Google Scholar
  37. 37.
    D.J. Srolovitz, S.A. Safran, J. Appl. Phys. 60, 247 (1986).CrossRefGoogle Scholar
  38. 38.
    C. Redon, F. Brochard-Wyart, F. Rondelez, Phys. Rev. Lett. 66, 715 (1991).CrossRefGoogle Scholar
  39. 39.
    G. Reiter, Phys. Rev. Lett. 68, 75 (1992).CrossRefGoogle Scholar
  40. 40.
    K. Jacobs, Thesis, University of Konstanz (1996) ISBN 3-930803-10-0.Google Scholar
  41. 41.
    P. Lambooy, K.C. Phelan, O. Haugg, G. Krausch, Phys. Rev. Lett. 76, 1110 (1996).CrossRefGoogle Scholar
  42. 42.
    T.G. Stange, D.F. Evans, W.A. Hendrickson, Langmuir 13, 4459 (1997).CrossRefGoogle Scholar
  43. 43.
    S. Herminghaus, Science 282, 916 (1998).CrossRefGoogle Scholar
  44. 44.
    J. Moriarty, L. Schwartz, E. Tuck, Phys. Fluids A 3, 733 (1991).CrossRefzbMATHGoogle Scholar
  45. 45.
    H. Greenspan, J. Fluid Mech. 84, 125 (1978).zbMATHGoogle Scholar
  46. 46.
    S. Troian, E. Herbolzheimer, S. Safran, J.F. Joanny, Europhys. Lett. 10, 25 (1989).Google Scholar
  47. 47.
    M. Spaid, G. Homsy, J. Non-Newt. Fluid Mech. 55, 249 (1994).CrossRefGoogle Scholar
  48. 48.
    M.A. Spaid, G.M. Homsy, Phys. Fluids 8, 460 (1996).CrossRefMathSciNetzbMATHGoogle Scholar
  49. 49.
    G. Reiter, Phys. Rev. Lett. 87, 186101 (2001).CrossRefGoogle Scholar
  50. 50.
    R. Seemann, S. Herminghaus, K. Jacobs, Phys. Rev. Lett. 87, 196101 (2001).Google Scholar
  51. 51.
    K. Jacobs, R. Seemann, G. Schatz, S. Herminghaus, Langmuir 14, 4961 (1998).CrossRefGoogle Scholar
  52. 52.
    F. Saulnier, E. Raphaël, P.-G. de Gennes, Phys. Rev. Lett. 88, 196101 (2002).CrossRefGoogle Scholar
  53. 53.
    F. Saulnier, E. Raphaël, P.-G. de Gennes, Phys. Rev. E 66, 061607 (2002).CrossRefGoogle Scholar
  54. 54.
    V. Shenoy, A. Sharma, Phys. Rev. Lett. 88, 236101 (2002).CrossRefGoogle Scholar
  55. 55.
    G. Reiter, P. Auroy, L. Auvray, Macromolecules 29, 2150 (1996).CrossRefGoogle Scholar
  56. 56.
    K. Jacobs, S. Herminghaus, K. Mecke, Langmuir 14, 965 (1998).CrossRefGoogle Scholar
  57. 57.
    D. Podzimek, cond-mat/0105065 (2001).Google Scholar
  58. 58.
    F. Brochard-Wyart, P.-G. de Gennes, H. Hervert, C. Redon, Langmuir 10, 1566 (1994).Google Scholar
  59. 59.
    R. Seemann, S. Herminghaus, K. Jacobs, Phys. Rev. Lett. 86, 5534 (2001).CrossRefGoogle Scholar
  60. 60.
    \(\mathfrak{R} \cdot) \mathrm{and} \mathfrak{I}(\cdot)\) denote the real and the imaginary part of their argument, respectively.Google Scholar
  61. 61.
    The same result is obtained for surface diffusion kinetics (D.J. Srolovitz, S.A. Safran, J. Appl. Phys. 60, 255 (1986)).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Applied Physics DepartmentUniversity of UlmUlmGermany

Personalised recommendations