Advertisement

The European Physical Journal E

, Volume 11, Issue 4, pp 325–333 | Cite as

Comparing simulation and experiment of a 2D granular Couette shear device

  • M. Lätzel
  • S. LudingEmail author
  • H. J. Herrmann
  • D. W. Howell
  • R. P. Behringer
Article

Abstract.

We present experiments along with molecular-dynamics (MD) simulations of a two-dimensional (2D) granular material in a Couette cell undergoing slow shearing. The grains are disks confined between an inner, rotating wheel and a fixed outer ring. The simulation results are compared to experimental studies and quantitative agreement is found. Tracking the positions and orientations of individual particles allows us to obtain density distributions, velocity and particle rotation rates for the system. The key issue of this paper is to show the extent to which quantitative agreement between an experiment and MD simulations is possible. Besides many differences in model details and the experiment, the qualitative features are nicely reproduced. We discuss the quantitative agreement/disagreement, give possible reasons, and outline further research perspectives.

Keywords

Experimental Study Density Distribution Granular Material Rotation Rate Individual Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Reynolds, Philos. Mag. Ser. 5 50-20, 469 (1885).Google Scholar
  2. 2.
    R.A. Bagnold, Proc. R. Soc. London 225, 49 (1954).Google Scholar
  3. 3.
    J.B. Knight, Phys. Rev. E 55, 6016 (1997).CrossRefGoogle Scholar
  4. 4.
    T.G. Drake, J. Geophys. Res. 95, 8681 (1990).Google Scholar
  5. 5.
    R.M. Nedderman, C. Laohakul, Powder Technol. 25, 91 (1980).CrossRefGoogle Scholar
  6. 6.
    S.B. Savage, K. Hutter, J. Fluid Mech. 199, 177 (1989).MathSciNetzbMATHGoogle Scholar
  7. 7.
    O. Pouliquen, R. Gutfraind, Phys. Rev. E 53, 552 (1996).CrossRefGoogle Scholar
  8. 8.
    H.J. Herrmann, Phys. Blätter 51, 1083 (1995).Google Scholar
  9. 9.
    L. Vanel, P. Claudin, J.-P. Bouchaud, M.E. Cates, E. Clément, J.P. Wittmer, Phys. Rev. Lett. 84, 1439 (2000).CrossRefGoogle Scholar
  10. 10.
    J. Geng, D. Howell, E. Longhi, R.P. Behringer, G. Reydellet, L. Vanel, E. Clément, S. Luding, Phys. Rev. Lett. 87, 035506 (2001).Google Scholar
  11. 11.
    J. Geng, R.P. Behringer, G. Reydellet, E. Clément, S. Luding, Green’s function measurements in 2d granular materials (2002), in preparation.Google Scholar
  12. 12.
    C.T. Veje, D.W. Howell, R.P. Behringer, Phys. Rev. E 59, 739 (1999).CrossRefGoogle Scholar
  13. 13.
    B. Miller, C. O’Hern, R.P. Behringer, Phys. Rev. Lett. 77, 3110 (1996).CrossRefGoogle Scholar
  14. 14.
    C.T. Veje, D.W. Howell, R.P. Behringer, S. Schöllmann, S. Luding, H.J. Herrmann, in Physics of Dry Granular Media, edited by H.J. Herrmann, J.-P. Hovi, S. Luding (Kluwer Academic Publishers, Dordrecht, 1998) p. 237.Google Scholar
  15. 15.
    D. Howell, R.P. Behringer, C. Veje, Phys. Rev. Lett. 82, 5241 (1999).CrossRefGoogle Scholar
  16. 16.
    D.W. Howell, R.P. Behringer, C.T. Veje, Chaos 9, 559 (1999).CrossRefzbMATHGoogle Scholar
  17. 17.
    D.W. Howell, Stress Distributions and Fluctuations in Static and Quasi-static Granular Systems, PhD Thesis, Duke University, Department of Physics (1999).Google Scholar
  18. 18.
    E. Azanza, F. Chevoir, P. Moucheront, J. Fluid Mech. 400, 199 (1999).CrossRefzbMATHGoogle Scholar
  19. 19.
    W. Losert, D.G.W. Cooper, J.P. Gollub, Phys. Rev. E 59, 5855 (1999).CrossRefGoogle Scholar
  20. 20.
    H. Buggisch, G. Löffelmann, Chem. Eng. Process. 26, 193 (1989).CrossRefGoogle Scholar
  21. 21.
    J.M. Rotter, J.M. F.G. Holst, J.Y. Ooi, A.M. Sanad, Philos. Trans. R. Soc. London, Ser. A 356, 2685 (1998).CrossRefGoogle Scholar
  22. 22.
    J.M. F.G. Holst, J.Y. Ooi, J.M. Rotter, G.H. Rong, J. Eng. Mech. ASCE 125, 94 (1999).CrossRefGoogle Scholar
  23. 23.
    J.M. F.G. Holst, J.M. Rotter, J.Y. Ooi, G.H. Rong, J. Eng. Mech. ASCE 125, 104 (1999).CrossRefGoogle Scholar
  24. 24.
    S. Luding, M. Lätzel, H.J. Herrmann, in Handbook of Conveying and Handling of Particulate Solids, edited by A. Levy, H. Kalman (Elsevier, Amsterdam, 2001) pp. 39-44.-1Google Scholar
  25. 25.
    S. Luding, M. Lätzel, W. Volk, S. Diebels, H.J. Herrmann, Comp. Meth. Appl. Mech. Eng. 191, 21 (2001).CrossRefzbMATHGoogle Scholar
  26. 26.
    C.S. Campbell, C.E. Brennen, J. Fluid. Mech. 151, 167 (1985).Google Scholar
  27. 27.
    D.J. Evans, G.P. Morriss, Phys. Rev. Lett. 51, 1776 (1983).CrossRefGoogle Scholar
  28. 28.
    O.R. Walton, R.L. Braun, Acta Mechanica 63, 73 (1986).Google Scholar
  29. 29.
    C. Thornton, K.K. Yin, Powder Technol. 65, 153 (1991).CrossRefGoogle Scholar
  30. 30.
    C. Thornton, J. Appl. Mech. 64, 383 (1997).zbMATHGoogle Scholar
  31. 31.
    C. Thornton, S.J. Antony, Powder Technol. 109, 179 (2000).CrossRefGoogle Scholar
  32. 32.
    M. Lätzel, S. Luding, H.J. Herrmann, Granular Matter 2, 123 (2000), cond-mat/0003180.CrossRefGoogle Scholar
  33. 33.
    S. Masson, J. Eng. Mech. 127, 1007 (2001).CrossRefGoogle Scholar
  34. 34.
    H.-J. Tillemans, H.J. Herrmann, Physica A 217, 261 (1995).CrossRefGoogle Scholar
  35. 35.
    C. Thornton, L. Zhang, in Powders & Grains 2001, edited by Y. Kishino (Balkema, Rotterdam, 2001) pp. 183-190.Google Scholar
  36. 36.
    M. Oda, K. Iwashita, Int. J. Eng. Sci. 38, 1713 (2000).CrossRefGoogle Scholar
  37. 37.
    M. Oda, H. Kazama, Géotechnique 48, 465 (1998).Google Scholar
  38. 38.
    F. Radjai, S. Roux, J.J. Moreau, Chaos 9, 544 (1999).CrossRefzbMATHGoogle Scholar
  39. 39.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987).Google Scholar
  40. 40.
    S. Schöllmann, Phys. Rev. E 59, 889 (1999).CrossRefGoogle Scholar
  41. 41.
    H.J. Herrmann, S. Luding, Continuum Mech. Thermodyn. 10, 189 (1998).CrossRefzbMATHGoogle Scholar
  42. 42.
    P.A. Cundall, O.D.L. Strack, Géotechnique 29, 47 (1979).Google Scholar
  43. 43.
    L. Brendel, S. Dippel, in Physics of Dry Granular Media, edited by H.J. Herrmann, J.-P. Hovi, S. Luding (Kluwer Academic Publishers, Dordrecht, 1998) p. 313.Google Scholar
  44. 44.
    S.F. Foerster, M.Y. Louge, H. Chang, K. Allia, Phys. Fluids 6, 1108 (1994).CrossRefGoogle Scholar
  45. 45.
    S. Luding, Adv. Complex Syst. 4, 379 (2002).CrossRefGoogle Scholar
  46. 46.
    M. Lätzel, Bestimmung der Cosseratparameter mit Hilfe diskreter Simulationen, Master’s Thesis, Universität Stuttgart (1999).Google Scholar
  47. 47.
    O.R. Walton, R.L. Braun, J. Rheol. 30, 949 (1986).CrossRefGoogle Scholar
  48. 48.
    R.W. Mei, H. Shang, O.R. Walton, J.F. Klausner, Powder Technol. 112, 102 (2000).CrossRefGoogle Scholar
  49. 49.
    C. Thornton, Géotechnique 50, 43 (2000).Google Scholar
  50. 50.
    S. Luding, J. Duran, E. Clément, J. Rajchenbach, J. Phys. I 6, 823 (1996).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • M. Lätzel
    • 1
  • S. Luding
    • 1
    Email author
  • H. J. Herrmann
    • 1
  • D. W. Howell
    • 2
  • R. P. Behringer
    • 2
  1. 1.Institute for Computer Applications 1StuttgartGermany
  2. 2.Department of Physics and Center for Nonlinear and Complex SystemsDuke UniversityDurham NCUSA

Personalised recommendations