Advertisement

The European Physical Journal E

, Volume 11, Issue 3, pp 301–311 | Cite as

Variational charge renormalization in charged systems

  • R. R. Netz
  • H. OrlandEmail author
Original Paper

Abstract.

We apply general variational techniques to the problem of the counterion distribution around highly charged objects where strong condensation of counterions takes place. Within a field-theoretic formulation using a fluctuating electrostatic potential, the concept of surface-charge renormalization is recovered within a simple one-parameter variational procedure. As a test, we reproduce the Poisson-Boltzmann surface potential for a single-charged planar surface both in the weak-charge and strong-charge regime. We then apply our techniques to non-planar geometries where closed-form solutions of the non-linear Poisson-Boltzmann equation are not available. In the cylindrical case, the Manning charge renormalization result is obtained in the limit of vanishing salt concentration. However, for intermediate salt concentrations a slow crossover to the non-charged-renormalized regime (at high salt) is found with a quasi-power-law behavior which helps to understand conflicting experimental and theoretical results for the electrostatic persistence length of polyelectrolytes. In the spherical geometry charge renormalization is only found at intermediate salt concentrations, in agreement with previous numerical results.

Keywords

Spherical Geometry Persistence Length Variational Procedure Variational Charge Charged System 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Holm, P. Kekicheff, R. Podgornik (Editors), Electrostatic Effects in Soft Matter and Biophysics (Kluwer Academic Publishers, Dordrecht, 2001).Google Scholar
  2. 2.
    G. Gouy, J. Phys. (Paris) IX, 457 (1910)Google Scholar
  3. 3.
    G.S. Manning, Ber. Bunsenges. Phys. Chem. 100, 909 (1996)CrossRefGoogle Scholar
  4. 4.
    G.V. Ramanathan, J. Chem. Phys. 78, 3223 (1983).ADSCrossRefGoogle Scholar
  5. 5.
    L. Belloni, M. Drifford, P. Turq, Chem. Phys. 83, 147 (1984).ADSCrossRefGoogle Scholar
  6. 6.
    S. Alexander, P.M. Chaikin, P. Grant, G.J. Morales, P. Pincus, D. Hone, J. Chem. Phys. 80, 5776 (1984).ADSCrossRefGoogle Scholar
  7. 7.
    G.V. Ramanathan, J. Chem. Phys. 88, 3887 (1988).ADSCrossRefGoogle Scholar
  8. 8.
    G.S. Manning, J. Chem. Phys. 51, 924Google Scholar
  9. 9.
    L. Belloni, Colloid Surf. A 140, 227 (1998).CrossRefGoogle Scholar
  10. 10.
    P.S. Kuhn, Y. Levin, M.C. Barbosa, Macromolecules 31, 8347 (1998).ADSCrossRefGoogle Scholar
  11. 11.
    L. Bocquet, E. Trizac, M. Aubouy, J. Chem. Phys. 117, 8138 (2002).ADSCrossRefGoogle Scholar
  12. 12.
    T. Odijk, J. Polym. Sci., Polym. Phys. Ed. 15, 477 (1977)CrossRefGoogle Scholar
  13. 13.
    J. Skolnick, M. Fixman, Macromolecules 10, 944 (1977).ADSCrossRefGoogle Scholar
  14. 14.
    J.-L. Barrat, J.-F. Joanny, Europhys. Lett. 24, 333 (1993).ADSCrossRefGoogle Scholar
  15. 15.
    S. Förster, M. Schmidt, Advances in Polymer Science, Vol. 120 (Springer-Verlag, Berlin, Heidelberg, 1995).Google Scholar
  16. 16.
    M.J. Stevens, M.O. Robbins, Europhys. Lett. 12, 81 (1990).ADSCrossRefGoogle Scholar
  17. 17.
    R.R. Netz, H. Orland, Eur. Phys. J. E 1, 203 (2000).CrossRefGoogle Scholar
  18. 18.
    R.R. Netz, Eur. Phys. J. E 5, 557 (2001).CrossRefGoogle Scholar
  19. 19.
    A.G. Moreira, R.R. Netz, Europhys. Lett. 52, 705 (2000).ADSCrossRefGoogle Scholar
  20. 20.
    A.G. Moreira, R.R. Netz, Phys. Rev. Lett. 87, 078301 (2001).ADSCrossRefGoogle Scholar
  21. 21.
    A.G. Moreira, R.R. Netz, Eur. Phys. J. E 8, 33 (2002).CrossRefGoogle Scholar
  22. 22.
    M. Le Bret, J. Chem. Phys. 76, 6243 (1982).ADSCrossRefGoogle Scholar
  23. 23.
    M. Fixman, J. Chem. Phys. 76, 6346 (1982).ADSCrossRefGoogle Scholar
  24. 24.
    C. Seidel, H. Schlacken, I. Müller, Macromol. Theory Simul. 3, 333 (1994).CrossRefGoogle Scholar
  25. 25.
    U. Micka, K. Kremer, Phys. Rev. E 54, 2653 (1996).ADSCrossRefGoogle Scholar
  26. 26.
    B.-Y. Ha, D. Thirumalai, J. Chem. Phys. 110, 7533 (1999).ADSCrossRefGoogle Scholar
  27. 27.
    R. Everaers, A. Milchev, V. Yamakov, Eur. Phys. J. E 8, 3 (2002).CrossRefGoogle Scholar
  28. 28.
    T.T. Nguyen, B.I. Shklovskii, Phys. Rev. E 66, 021801 (2002).ADSCrossRefGoogle Scholar
  29. 29.
    R.R. Netz, H. Orland, Eur. Phys. J. B 8, 81 (1999).ADSCrossRefGoogle Scholar
  30. 30.
    Experimentally, the importance of charge renormalization has recently been stressed for semi-dilute solutions of polyelectrolytes, see F. Bordi, C. Cametti, J.S. Tan, D.C. Boris, W.E. Krause, N. Plucktaveesak, R.H. Colby, Macromolecules 35, 7031 (2002).CrossRefGoogle Scholar
  31. 31.
    R. Kjellander, J. Chem. Phys. 99, 10392 (1995).CrossRefGoogle Scholar
  32. 32.
    C. Fleck, R.R. Netz, H.H. von Grünberg, Biophys. J. 82, 76 (2002).ADSCrossRefGoogle Scholar
  33. 33.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics, (Oxford University Press, Oxford, 1986).Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Sektion PhysikLudwig-Maximilians-UniversitätMünchenGermany
  2. 2.Service de Physique ThéoriqueCEA-SaclayGif-sur-YvetteFrance

Personalised recommendations