Advertisement

The European Physical Journal E

, Volume 22, Issue 1, pp 85–95 | Cite as

Electro-optic characterization of a nematic phase formed by bent core mesogens

  • M.-G. Tamba
  • W. Weissflog
  • A. Eremin
  • J. Heuer
  • R. Stannarius
Regular Articles

Abstract.

The purpose of this paper is the demonstration that bent core nematic phases behave quantitatively and qualitatively very different from ordinary calamitic nematics in their electro-optical characteristics. We present measurements of the elastic properties from the analysis of Brochard-Leger walls that are formed during the splay Fréedericksz transition in sandwich cells. These walls possess an unusually large shape anisotropy as compared to similar structures in calamitic nematics. The wall shapes can be explained when one assumes that the bend elastic constant K33 is one order of magnitude larger than the twist constant K22 of the material, supposing that flexoelectricity in the description of the elastic deformations can be neglected. Further we report periodic structures above the splay Fréedericksz transition with a wave vector perpendicular to the director easy axis. They represent either a static instability or an unconventional type of electrically driven convection.

PACS.

61.30.Eb Experimental determinations of smectic, nematic, cholesteric, and other structures 61.30.Hn Surface phenomena: alignment, anchoring, anchoring transitions, surface-induced layering, surface-induced ordering, wetting, prewetting transitions, and wetting transitions 62.20.Dc Elasticity, elastic constants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Pelzl, S. Diele, W. Weissflog, Adv. Mater. 11, 707 (1999) CrossRefGoogle Scholar
  2. R.A. Reddy, C. Tschierske, J. Mater. Chem. 16, 907 (2006) CrossRefGoogle Scholar
  3. H. Takezoe, Y. Takanishi, Jap. J. Appl. Phys. 45, 597 (2006) CrossRefADSGoogle Scholar
  4. A. Eremin, H. Nadasi, G. Pelzl, S. Diele, H. Kresse, W. Weissflog, S. Grande, Phys. Chem. Chem. Phys. 6, 1290 (2004) CrossRefGoogle Scholar
  5. M.W. Schröder, S. Diele, G. Pelzl, N. Pancenko, W. Weissflog, Liq. Cryst. Google Scholar
  6. C.V. Yelamaggad et al., Angew. Chem. Int. Ed. 43, 3429 (2004) CrossRefGoogle Scholar
  7. M.-G. Tamba et al., Soft Matter 2, 60 (2006) CrossRefGoogle Scholar
  8. V. Fréedericksz, V. Zolina, Z. Kristallogr. 79, 225 (1931) Google Scholar
  9. R. Stannarius, in Handbook of Liquid Crystals, edited by D. Demus, J.W. Goodby, G.W. Gray, H.W. Spiess, V. Vill, Wiley-VCH, Weinheim, 1998, Chap. 2.1., Vol. 2A Google Scholar
  10. P.R. Gerber, M. Schadt, Z. Naturforschung A. 35, 1036 (1980) Google Scholar
  11. M.J. Bradshaw, E.P. Raynes, J.D. Bunning, T.E. Faber, J. Physique 46, 1513 (1985) Google Scholar
  12. A. Scharkowski, H. Schmiedel, R. Stannarius, E. Weisshuhn, Z. Naturforschung A. 45, 37 (1990); A. Scharkowski, H. Schmiedel, R. Stannarius, E. Weisshuhn, Mol. Cryst. Liq. Cryst. 191, 419 (1990) Google Scholar
  13. H. Gruler, G. Meier, Mol. Cryst. Liq. Cryst. 16, 299 (1972); H. Gruler, T.J. Scheffer, G. Meier, Z. Naturforschung 27a, 966 (1972) Google Scholar
  14. H. Deuling, Mol. Cryst. Liq. Cryst. 19, 123 (1972) Google Scholar
  15. H. Deuling, Mol. Cryst. Liq. Cryst. 26, 281 (1973) Google Scholar
  16. C.V. Brown, N.J. Mottram, Phys. Rev. E 68, 031702 (2003) CrossRefADSGoogle Scholar
  17. L. Leger, Mol. Cryst. Liq. Cryst. 24, 33 (1973) Google Scholar
  18. L. Leger, Solid State Commun. 11, 1499 (1972) CrossRefGoogle Scholar
  19. F. Brochard, J. Phys. France 33, 607 (1972) Google Scholar
  20. P. Schiller, F. Zeitler, J. Phys. II France 6, 1175 (1996) CrossRefGoogle Scholar
  21. A. Vella et al., Phys. Rev. E 71, 061705 (2005) CrossRefADSGoogle Scholar
  22. X.-Y. Wang, Phys. Lett. 112A, 402 (1985); X.-Y. Wang, Phys. Rev. A 32, 3126 (1985); X.-Y. Wang, Phys. Rev. A 34, 5179 (1986); L. Lin, C.Q. Shu, Phys. Lett. 119A, 178 (1986); see also the comment in Xie CrossRefGoogle Scholar
  23. Xie Yu-Zhang, Phys. Rev. A 37, 5002 (1988) CrossRefADSGoogle Scholar
  24. T. Frisch, J.M. Gilli, J. Phys. II France 5, 561 (1995) CrossRefGoogle Scholar
  25. F. Lonberg, R.B. Meyer, Phys. Rev. Lett. 55, 718 (1985) CrossRefADSGoogle Scholar
  26. M.I. Barnik, L.M. Blinov, A.N. Trufanov, B.A. Umanski, J. Phys. France 39, 417 (1978) Google Scholar
  27. Y.P. Bobylev, V.G. Chigrinov, S.A. Pikin, J. Phys. France Colloq. 40, C3 (1979) Google Scholar
  28. A.M. Figueredo Neto, Ph. Martinot-Lagarde, Ph. Durand, J. Phys. Lett. France 45, L-793 (1984) Google Scholar
  29. M. Grigutsch, N. Klöpper, H. Schmiedel, R. Stannarius, Phys. Rev. E 49, 5452 (1994) CrossRefADSGoogle Scholar
  30. H. Schmiedel et al. Liq. Cryst. 14, 1935 (1993); Ch. Cramer, U. Kühnau, H. Schmiedel, R. Stannarius, Mol. Cryst. Liq. Cryst. 257, 99 (1995) Google Scholar
  31. D. Wiant, J.T. Gleeson, N. Éber, K. Fodor-Csorba, A. Jákli, T. Tóth-Katona Phys. Rev. E 72, 041712 (2005) CrossRefADSGoogle Scholar
  32. J. Harden, B. Mbanga, N. Éber, K. Fodor-Csorba, S. Sprunt, J.T. Gleeson, A. Jákli, Phys. Rev. Lett. 97, 157802 (2006); J. Harden, B. Mbanga, N. Éber, K. Fodor-Csorba, S. Sprunt, J.T. Gleeson, A. Jákli, e-lc communications (2006) http://www.e-lc.org/docs/2006_07_18_08_47_15 CrossRefADSGoogle Scholar
  33. E.F. Carr, J. Chem. Phys. 38, 1536 (1963); W. Helfrich, J. Chem. Phys. 51, 4092 (1969) CrossRefGoogle Scholar
  34. A. Buka et al. Phys. Rev. E 66, 051713 (2002) Google Scholar
  35. E. Kochowska, S. Németh, G. Pelzl, A. Buka, Phys. Rev. E 70, 011711 (2004) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • M.-G. Tamba
    • 1
  • W. Weissflog
    • 1
  • A. Eremin
    • 2
  • J. Heuer
    • 2
  • R. Stannarius
    • 2
  1. 1.Martin-Luther-University Halle, Institute of Physical ChemistryHalleGermany
  2. 2.Otto-von-Guericke-University, Institute of Experimental Physics, Universitätsplatz 2MagdeburgGermany

Personalised recommendations