Advertisement

The European Physical Journal E

, Volume 22, Issue 1, pp 67–75 | Cite as

Polymerization of 2-methylaniline and 2-methoxyaniline in water/pentane biphasic system

  • M. MazurEmail author
Regular Articles

Abstract.

We report on chemical polymerization of two aniline derivatives — 2-methylaniline and 2-methoxyaniline — in a two-phase water/pentane system. We have found that poly(2-methylaniline) is produced in form of an amorphous material regardless of the fact whether the monomer is initially dissolved in aqueous or organic phase. The behavior of 2-methoxyaniline is significantly different. The oxidation of this monomer generally results in formation of a water soluble oligomer and an insoluble polymeric product. In consequence, depending on the experimental setup, the polymer is prepared in form of a thin film at the organic/aqueous interface or as micrometer-sized spherical particles dispersed in the aqueous phase.

PACS.

82.35.Cd Conducting polymers 81.07.-b Nanoscale materials and structures: fabrication and characterization 82.65.+r Surface and interface chemistry; heterogeneous catalysis at surfaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

video1.mpg (2.3 mb)
The video presents polymerization of 2-methylaniline in a biphasic system. The monomer is dissolved in pentane (upper) phase while the oxidant is present in aqueous phase (HCl solution). As it can be seen, the polymer is produced within the entire volume of the aqueous solution. The time scale of the video is accelerated.
video2.mpg (1.6 mb)
The video presents polymerization of 2-methoxyaniline in a biphasic system. The monomer is dissolved in pentane (upper) phase while the oxidant is present in aqueous phase (HCl solution). As it can be seen, the polymer is produced within the entire volume of the aqueous solution. The time scale of the video is accelerated.

The video presents polymerization of 2-methylaniline in a biphasic system. Both the monomer and the oxidant are present in the aqueous phase (HCl solution). This solution is in contact with pentane (upper phase). As it can be seen, the polymer is produced within the entire volume of the aqueous phase. The time scale of the video is accelerated.

The video presents polymerization of 2-methoxyaniline in a biphasic system. Both the monomer and the oxidant are present in the aqueous phase (HCl solution). This solution is in contact with pentane (upper phase). As it can be seen, the polymer is produced at the interface between pentane and aqueous solution. The time scale of the video is accelerated.

References

  1. S.K. Dhawan, N. Singh, S. Venkatachalam, Synth. Met. 125, 389 (2001) CrossRefGoogle Scholar
  2. P. Somani, A.B. Mandale, S. Radhakrishnan, Acta. Mater. 48, 2859 (2000) CrossRefGoogle Scholar
  3. K.G. Conroy, C.B. Breslin, Electrochim. Acta 48, 721 (2003) CrossRefGoogle Scholar
  4. E.P. Maziarz, S.A. Lorenz, T.P. White, T.D. Wood, J. Am. Soc. Mass Spectrom. 11, 659 (2000) CrossRefGoogle Scholar
  5. P. Novak, K. Muller, K.S.V. Santhanam, O. Haas, Chem. Rev. 97, 207 (1997) CrossRefGoogle Scholar
  6. R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. Taliani, D.D.C. Bradley, D.A. Dos Santos, J.L. Bredas, W.R. Salaneck, Nature 397, 121 (1999) CrossRefADSGoogle Scholar
  7. R. Holze, Collect. Czech. Chem. Commun. 65, 899 (2000) CrossRefGoogle Scholar
  8. P. Sbaite, D. Huerta-Vilca, C. Barbero, M.C. Miras, A.J. Motheo, European Polymer Journal 40, 1445 (2004) CrossRefGoogle Scholar
  9. J. Laska, J. Widlarz, Polymer 46, 1485 (2005) CrossRefGoogle Scholar
  10. Z. Wei, Z. Zhang, M. Wan, Langmuir 18, 917 (2002) CrossRefGoogle Scholar
  11. J. Liu, M. Wan, J. Mater. Chem. 11, 404 (2001) CrossRefGoogle Scholar
  12. Y. Yang, M. Wan, J. Mater. Chem. 12, 897 (2002) CrossRefGoogle Scholar
  13. U. Sree, Y. Yamamoto, B. Deore, H. Shiigi, T. Nagaoka, Synth. Met. 131, 161 (2002) CrossRefGoogle Scholar
  14. J. Huang, S. Virji, B.H. Weiller., R.B. Kaner, J. Am. Chem. Soc. 125, 314 (2003) CrossRefGoogle Scholar
  15. J. Huang, R.B. Kaner, J. Am. Chem. Soc. 126, 851 (2004) CrossRefGoogle Scholar
  16. S. Virji, J. Huang, R.B. Kaner, B.H. Weiller, Nano Lett. 3, 491 (2004) CrossRefGoogle Scholar
  17. J. Huang, S. Virji, B.H. Weiller., R.B. Kaner, Chem. Eur. J. 10, 1315 (2004) CrossRefGoogle Scholar
  18. Y. He, Mater. Sci. Eng. 122, 76 (2005) CrossRefGoogle Scholar
  19. H. Gao, T. Jiang, B. Han, Y. Wang, J. Du, Z. Liu, J. Zhang, Polymer 45, 3017 (2004) CrossRefGoogle Scholar
  20. Z.H. Wang, A. Ray, A.G. Macdiarmid, A.J. Epstein, Phys. Rev. B 43, 4373 (1991) CrossRefADSGoogle Scholar
  21. P. Ghosh, S.K. Siddhanta, J. Polym. Sci. A 37, 3243 (1999) CrossRefGoogle Scholar
  22. S.K. Dhawan, D.C. Trivedi, Synth. Met. 60, 63 (1993) CrossRefGoogle Scholar
  23. I. Fuijta, M. Ishiguchi, H. Shiota, T. Danjo, K. Kosai, J. Appl. Polym., Sci. 44, 987 (1992) Google Scholar
  24. D. Kumar, Eur. Polym. J. 37, 1721, (2001) CrossRefGoogle Scholar
  25. M. Hasik, E. Wenda, A. Bernasik, K. Kowalski, J.W. Sobczak, E. Sobczak, E. Bielanska, Polimer 44, 7809 (2003) CrossRefGoogle Scholar
  26. M. Mazur, P. Krysiński, Electrochim. Acta 46, 3963 (2001) CrossRefGoogle Scholar
  27. M. Mazur, P. Krysiński, Langmuir 17, 7093 (2001) CrossRefGoogle Scholar
  28. M. Mazur, M. Tagowska, B. Pałys, K. Jackowska, Electrochem. Commun. 5, 403 (2003) CrossRefGoogle Scholar
  29. M. Mazur, G.J. Blanchard, Langmuir 20, 3471 (2004) Google Scholar
  30. M. Mazur, P. Predeep, Polymer 46, 1724 (2005) CrossRefGoogle Scholar
  31. M. Mazur, A. Michota-Kaminska, J. Bukowska, Electrochim. Acta, doi:10.1016/j.electacta.2006.10.043 Google Scholar
  32. M. Mazur, A. Frydrychewicz, J. Appl. Polym. Sci. (accepted) Google Scholar
  33. W.A. Gayotti, M.A. De Paoli, Sznth. Met. 80, 263 (1996) CrossRefGoogle Scholar
  34. D. Goncalves, D.S. dosSantos, L.H.C. Mattoso, F.E. Karasz, L. Akcelrud, R.M. Faria, Synth. Met. 90, 5 (1997) CrossRefGoogle Scholar
  35. L.H.C. Mattoso, S.K. Manohar, A.G. MacDiarmid, A.J. Epstein, J. Polym. Sci. A. 33, 1227 (1995) CrossRefGoogle Scholar
  36. I. Gill, Chem. Mater. 13, 3404 (2001) CrossRefGoogle Scholar
  37. J. Livage, T. Coradin, C. Roux, J. Phys.: Condens. Matter 13, R673 (2001) Google Scholar
  38. I. Gill, A. Ballesteros, Trends in Biotechnology 18, 282 (2000) CrossRefGoogle Scholar
  39. S.C. Barton, J. Gallaway, P. Atanassov, Chem. Rev. 104, 4867 (2004) CrossRefGoogle Scholar
  40. T.S. Wong, U. Schwaneberg, Current Opinion in Biotechnology 14, 590 (2003) CrossRefGoogle Scholar
  41. M. Hasik, A. Drelinkiewicz, E. Wenda, C. Paluszkiewicz, S. Quillard, J. Mol. Struct. 596, 89 (2001) CrossRefGoogle Scholar
  42. J. Widera, B. Pałys, J. Bukowska, K. Jackowska, Synth. Met. 94, 265 (1998) CrossRefGoogle Scholar
  43. H.Q. Tang, A. Kitani, M. Shiotani, Electrochim. Acta 41, 1561 (1996) CrossRefGoogle Scholar
  44. G.M. Morales, M.C. Miras, C. Barbero, Synth. Met. 101, 686 (1999) CrossRefGoogle Scholar
  45. S. Patil, J.R. Mahajan, M.A. More, P.P. Patil, Mater. Lett. 39, 1999 (298) Google Scholar
  46. H.-J. Butt, K. Graf, M. Kappl, Physics and Chemistry of Interfaces, (Wiley-VCH Verlag & Co. KGaA, 2003) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Chemistry, Laboratory of ElectrochemistryUniversity of WarsawWarsawPoland

Personalised recommendations