The European Physical Journal E

, Volume 18, Issue 4, pp 467–481 | Cite as

Structure and relaxation dynamics of poly(amide urethane)s with bioactive transition metal acetyl acetonates in hard blocks

  • I. M. Kalogeras
  • M. Roussos
  • A. Vassilikou-Dova
  • A. Spanoudaki
  • P. Pissis
  • Y. V. Savelyev
  • V. I. Shtompel
  • L. P. Robota
Regular Articles


Structural characteristics, thermal transitions and molecular dynamics of selected poly(amide urethane)s with transition metal acetyl acetonates Me(AcAc)2 (Me = Sn4+, Zn2+, Cu2+, Pb2+) as chain extenders, were comparatively investigated using small- and wide-angle X-ray scattering (SAXS, WAXS), differential scanning calorimetry (DSC), and dielectric techniques (dielectric relaxation spectroscopy, DRS; thermally stimulated currents, TSC). We studied the influence of metal chelates on the mixing of the soft-segment (SS) and hard-segment (HS) domains and the related degree of microphase separation (DMS). The reactivity of Me(AcAc)2 with macrodiisocyanate was found to decrease in the order Sn(AcAc)2Cl2 > Cu(AcAc)2 > Zn(AcAc)2 > Pb(AcAc)2. While Pb(AcAc)2 shows a higher tendency for crystallisation, both the dielectric and calorimetric results suggest that the corresponding polyurethane has comparatively low DMS. The type of the transition metal has moderate effect on the glass transition temperature and no influence on the shape of the dielectric α relaxation signal, indicating weak interactions between metal ions and SS domains. In contrast, structural parameters and the dielectric behaviour of the β relaxation suggest preference for hydrogen-bonding interactions between Sn4+ and Cu2+ metal-chelates and HS domains. The temperature dependence of dc conductivity σdc is described by the Vogel-Tammann-Fulcher equation and signifies the coupling between the mobility of polymeric chains and charges' motion. It may be expected that the present combination of techniques and particular results with respect to DMS will contribute to the development and testing of novel biodegradation-resistant and antibacterial metal-polyurethanes for biotechnological and industrial applications.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J.-D. Gu, Int. Biodeter. Biodegr. 52, 69 (2003) Google Scholar
  2. G.T. Howard, Int. Biodeter. Biodegr. 49, 242 (2002) Google Scholar
  3. Yu.V. Savelyev, L.P. Robota, A.V. Rudenko, E.Z. Koval, Reports Nat. Acad. Sci. Ukr. 1, 141 (2005) Google Scholar
  4. L.M. Leung, J.T. Koberstein, Macromolecules 19, 706 (1986) Google Scholar
  5. B. Chu, T. Gao, Y. Li, J. Wang, C.R. Desper, C.A. Byrne, Macromolecules 25, 5724 (1992) Google Scholar
  6. Y.V. Savelyev, E.R. Akhranovich, A.P. Grekov, E.G. Privalko, V.V. Korskanov, V.I. Shtompel, V.P. Privalko, P. Pissis, A. Kanapitsas, Polymer 39, 3425 (1998) Google Scholar
  7. S.H. Hsu, Y.C. Kao, Macromol. Biosci. 5, 246 (2005); A. Burke, N. Hasirci, Adv. Exp. Med. Biol. 553, 83 (2004); M.D. Lelah, S.L. Cooper, Polyurethane in Medicine (CRC Press, Boca Raton, Florida, 1986), p. 43 Google Scholar
  8. V. Acharya, C.R. Prabha, C. Narayanamurthy, Biomaterials 25, 4555 (2004); R. Jayakumar, Y.S. Lee, M. Rajkumar, S. Nanjundan, J. Appl. Polym. Sci. 91, 288 (2004) Google Scholar
  9. K.T. Chen, Y.I. Chui, S.T. Shieh, Macromolecules 30, 5068 (1997) Google Scholar
  10. J.T. Koberstein, A.F. Galambos, L.M. Leung, Macromolecules 25, 6195 (1992) Google Scholar
  11. V.P. Privalko, E.S. Khaenko, A.P. Grekov, Y.V. Savelyev, Polymer 35, 1730 (1994) Google Scholar
  12. J.T. Garrett, J.S. Lin, J. Runt, Macromolecules 35, 161 (2002); P.J. Yoon, C.D. Han, Macromolecules 33, 2171 (2000); J.T. Koberstein, L.M. Leung, Macromolecules 25, 6205 (1992) Google Scholar
  13. P.R. Laity, J.E. Taylor, S.S. Wong, P. Khunkamchoo, K. Norris, M. Cable, G.T. Andrews, A.F. Johnson, R.E. Cameron, Polymer 45, 7273 (2004); R.L. Oréfice, E. Ayres, M.M. Pereira, H.S. Mansur, Macromolecules 38, 4058 (2005) Google Scholar
  14. P. Pissis, A. Kanapitsas, Y.V. Savelyev, E.R. Akhranovich, E.G. Privalko, V.P. Privalko, Polymer 39, 3431 (1998) Google Scholar
  15. P. Czech, L. Okrasa, G. Boiteux, F. Méchin, J. Ulanski, J. Non-Cryst. Solids 351, 2735 (2005); L. Okrasa, M. Zigon, E. Zagar, P. Czech, G. Boiteux, J. Non-Cryst. Solids 351, 2753 (2005) Google Scholar
  16. Z.-Y. Cheng, S. Gross, J. Su, Q.M. Zhang, J. Polym. Sci., Part B: Polym. Phys. 37, 983 (1999) Google Scholar
  17. P. Frübing, H. Kruger, H. Goering, R. Gerhard-Multhaupt, Polymer 43, 2787 (2002) Google Scholar
  18. International Standard ISO 846 (1997) (E) Plastics – Evaluation of the action of microorganisms, Second edition, p. 22 Google Scholar
  19. L.P. Robota, Yu.V. Savelyev, A.V. Rudenko, E.Z. Koval, Polym. J. Ukr. 26, 267 (2004) Google Scholar
  20. B.B. Sauer, in Performance of Plastics. edited by W. Brostow (Hanser, Munich-Cincinnati, 2000), Chap. 10 Google Scholar
  21. H. Vogel, Phyz. Z 22, 645 (1921); G. Tammann, G. Hesse, Z. Anorg. Allg. Chem. 56, 245 (1926); G.S. Fulcher, J. Amer. Ceram. Soc. 8, 339 (1925) Google Scholar
  22. J. Van Turnhout, in Electrets, edited by G.M. Sessler, Topics Appl. Phys. 33 (Springer, Berlin 1980), p. 81 Google Scholar
  23. I.M. Kalogeras, Acta Mater. 53, 1621 (2005) Google Scholar
  24. J.C. Giuntini, J. Vanderschueren, J.V. Zanchetta, F. Henn, Phys. Rev. B 50, 12489 (1994) Google Scholar
  25. M. Grimau, E. Laredo, A. Bello, N. Suarez, J. Polym. Sci., Part B: Polym. Phys. 35, 2483 (1997) Google Scholar
  26. R. Diaz-Calleja, M.J. Sanchis, C. Alvarez, E. Riande, J. Appl. Phys. 81, 3685 (1997) Google Scholar
  27. B.B. Sauer, P. Avakian, E.A. Flexman, M. Keating, B.S. Hsiao, R.K. Verma, J. Polym. Sci., Part B: Polym. Phys. 35, 2121 (1997) Google Scholar
  28. A. Boersma, J. van Turnhout, M. Wübbenhorst, Macromolecules 31, 7453 (1998) Google Scholar
  29. N.A. Nikonorova, T.I. Borisova, E.B. Barmatov, P. Pissis, R. Diaz-Calleja, Polymer 43, 2229 (2002) Google Scholar
  30. O. Kratky, I. Pilz, P.J. Schmitz, J. Colloid Interface Sci. 21, 24 (1996) Google Scholar
  31. P.W. Schmidt, R.J. Hight, Appl. Cryst. 13, 480 (1960) Google Scholar
  32. B. Chu, D.M. Tan Greti, Appl. Cryst. 18, 1083 (1965) Google Scholar
  33. V.A. Vilenskii, Yu.N. Lipatnikov, V.I. Shtompel, N.A. Lipatnikov, Yu.Yu. Kercha, Vysokomol. Soed. A 34, 45 (1992) Google Scholar
  34. A. Noshae, J.E. Mc Grath, Block-copolymers, Academic Press, NY (1977) Google Scholar
  35. A. Guinier, Théorie et technique de la Radiocristallographic (Dunod, Paris, 1956), p. 601 Google Scholar
  36. Ye.P. Mamunya, V.I. Shtompel, E.V. Lebedev, P. Pissis, A. Kanapitsas, G. Boiteux, Eur. Polym. J. 40, 2323 (2004) Google Scholar
  37. A. Guinier, G. Fourner, Small-Angle Scattering of X-rays. (John Wiley, New York, 1955), p. 268 Google Scholar
  38. R. Perret, W. Ruland, Z.Z. Kolloid, Polym. 247, 835 (1971) Google Scholar
  39. Yu.V. Savelyev, O.M. Fedorenko, V.A. Khranovskii, V.Ya. Veselov, A.P. Grekov, Ukr. Khim. Zhurn. 56, 306 (1990) Google Scholar
  40. It is worth mentioning that the high-temperature DSC signals are located in the region of the decomposition temperatures of several PU components and products formed by secondary reactions of MDI, as reported by Moroi and Ciobanu who used thermogravimetric analysis. The thermal degradation of PUs is reported to be a complex process, in agreement with the structure of the present endothermic DSC signals. Furthermore, the stability of constituting phases and intermediate decomposition products is influenced by the ionic species incorporated in polyurethane structures (see: G. Moroi, C. Ciobanu, J. Anal. Appl. Pyrolysis. 70, 87 (2003) and references therein) Google Scholar
  41. G. Georgoussis, A. Kanapitsas, P. Pissis, Y.V. Savelyev, V.Y. Veselov, E.G. Privalko, Eur. Polym. J. 36, 1113 (2000) Google Scholar
  42. P. Pissis, L. Apekis, C. Christodoulides, M. Niaounakis, A. Kyritsis, J. Nedbal, J. Polym. Sci., Part B: Polym. Phys. 34, 1529 (1996) Google Scholar
  43. C. Tsonos, L. Apekis, C. Zois, G. Tsonos, Acta Mater 52, 1319 (2004) Google Scholar
  44. A. Kanapitsas, P. Pissis, J.L. Gomez-Ribelles, M. Monleon-Pradas, E.G. Privalko, V.P. Privalko, J. Appl. Polym. Sci. 71, 1209 (1999) Google Scholar
  45. M. Roussos, A. Konstantopoulou, I.M. Kalogeras, A. Kanapitsas, P. Pissis, Y. Savelyev, A. Vassilikou-Dova, E-Polymers, Art. No. 042 (2004) Google Scholar
  46. L. Apekis, P. Pissis, C. Christodoulides, G. Spathis, M. Niaounakis, E. Kontou, E. Schlosser, A. Schonhals, M. Goering, Prog. Coll. Polymer Sci. 90, 144 (1992) Google Scholar
  47. H. Shimizu, K. Nakayama, Jpn. J. Appl. Phys. 29, L800 (1990) Google Scholar
  48. R. Pelster, T. Kruse, A. Krauthaeuser, G. Nimtz, P. Pissis, Phys. Rev. B 57, 8763 (1998) Google Scholar
  49. J.-P. Crine, IEEE Trans. Electr. Insul. 22, 169 (1987) Google Scholar
  50. B.B. Sauer, J.J.M. Ramos, Polymer 38, 4065 (1997) Google Scholar
  51. C. Lacabanne, A. Lamure, G. Teyssedre, A. Bernes, M. Mourgues, J. Non-Cryst. Solids 172-174, 645 (1994) Google Scholar
  52. J.J.M. Ramos, J.F. Mano, B.B. Sauer, Polymer 38, 1081 (1997) Google Scholar
  53. P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glasses 13, 171 (1972); I.M. Hodge, K.L. Ngai, C.T. Moynihan, J. Non-Cryst. Solids 351, 104 (2005) Google Scholar
  54. A.G. Charnetskaya, G. Polizos, V.I. Shtompel, E.G. Privalko, Yu.Yu. Kercha, P. Pissis, Eur. Polym. J. 39, 2167 (2003) Google Scholar
  55. C.A. Angel, J. Non-Cryst. Solids 131-133, 13 (1991) Google Scholar
  56. E. Donth, Relaxation and Thermodynamics in Polymers, Glass Transition. (Berlin: Akademie Publ., 1992) Google Scholar
  57. C. Christodoulides, P. Pissis, L. Apekis, D. Daoukaki-Diamanti, J. Phys. D Appl. Phys. 24, 2050 (1991) Google Scholar
  58. I.M. Kalogeras, E.R. Neagu, A. Vassilikou-Dova, Macromolecules 37, 1042 (2004) Google Scholar
  59. K. Raftopoulos, I. Zegkinoglou, A. Kanapitsas, S. Kripotou, I. Christakis, A. Vassilikou-Dova, P. Pissis, Y. Savelyev, E-Polymers, Art. No. 043 (2004) Google Scholar
  60. H. Jain, K.L. Ngai, in Relaxation in Complex Systems, edited by K.L. Ngai, G.B. Wright, (Washington, DC: Naval Research Laboratory, 1984), p. 221 Google Scholar
  61. L.-F. Wang, Y.-H. Wei, Colloids Surf. B 41, 249 (2005) and references therein Google Scholar
  62. With reference to the meaning of the T0 parameter that appears in the VTF equation used for σdc(T) it is interesting to note a recent report on the temperature dependent conductivity of α-polyvinylidene fluoride [E. Tuncer, M. Wegener, P. Frübing, R. Gerhard-Multhaupt, J. Chem. Phys. 122, 084901 (2005)], which presents some evidence for a relation between T0 and the Tg values determined for α-PVDF. In the present case, some agreement between Tg, Tα and the T0 estimate only appeared in the case of PU1. Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • I. M. Kalogeras
    • 1
  • M. Roussos
    • 1
  • A. Vassilikou-Dova
    • 1
  • A. Spanoudaki
    • 2
  • P. Pissis
    • 2
  • Y. V. Savelyev
    • 3
  • V. I. Shtompel
    • 3
  • L. P. Robota
    • 3
  1. 1.Department of Solid State PhysicsFaculty of Physics, University of Athens ZografosGreece
  2. 2.Department of PhysicsNational Technical University of AthensZografosGreece
  3. 3.Institute of Macromolecular Chemistry, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations