The European Physical Journal E

, Volume 18, Issue 3, pp 295–309 | Cite as

A thermodynamic multiphase scheme treating polymer crystallization and melting

  • G. StroblEmail author
Regular Articles


A comparison of transition and melting temperatures of n-alkanes with experimentally determined ticknesses and melting points of polyethylene lamellae shows that the variation of the thickness with the crystallization temperature virtually agrees with the chain length dependence of the crystalline-mesomorphic phase transition in n-alkanes. Mesomorphic polyethylene layers are stable objects up to the thickness set by this phase transition. The findings lend further support to the view that polymer crystallization generally uses a route which includes a passage via a mesomorphic phase. We construct a thermodynamic scheme dealing with the transitions between melt, mesomorphic layers and lamellar crystallites, assuming for the latter ones that they exist both in an initial “native” and a final “stabilized” form. Application of the scheme in a reconsideration and quantitative evaluation of SAXS and DSC results previously obtained for PE, sPP, iPS and P(epsilonCL) yields the equilibrium transition temperatures between the various phases, latent heats of transition and surface free energies. According to the results the mesomorphic phases are not liquid-like, but have thermodynamic properties which place them truly intermediate between melt and crystals.


Crystallization Phase Transition Free Energy Thermodynamic Property Crystallization Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J.D. Hoffman, G.T. Davis, J.I. Lauritzen, Treatise on Solid State Chemistry 3, edited by N.B. Hannay (Plenum 1976), p. 497 Google Scholar
  2. D.M. Sadler, G.H. Gilmer, Phys. Rev. B 38, 5684 (1988) CrossRefADSGoogle Scholar
  3. G. Hauser, J. Schmidtke, G. Strobl, Macromolecules 31, 6250 (1998) CrossRefGoogle Scholar
  4. B. Heck, T. Hugel, M. Iijima, E. Sadiku, G. Strobl, New J. Phys. 1, 17 (1999) ADSGoogle Scholar
  5. S. Rastogi, M. Hikosaka, H. Kawabata, A. Keller, Macromolecules 24, 6384 (1991) CrossRefGoogle Scholar
  6. A. Keller, M. Hikosaka, S. Rastogi, A. Toda, P.J. Barham, G. Goldbeck-Wood. J. Mater. Sci. 29, 2579 (1994) Google Scholar
  7. G. Strobl, Eur. Phys. J. E 3, 165 (2000) CrossRefGoogle Scholar
  8. G. Strobl, The Physics of Polymers (Springer, 1997), p. 166 Google Scholar
  9. U. Leute, W. Dollhopf, Coll. Polym. Sci. 258, 353 (1980) Google Scholar
  10. G. Ungar, Macromolecules 19, 1323 (1986) CrossRefGoogle Scholar
  11. M. Hikosaka, Polymer 31, 458 (1990) CrossRefGoogle Scholar
  12. T.Y. Cho, B. Heck, G. Strobl, Coll. Polym. Sci. 282, 825 (2004) CrossRefGoogle Scholar
  13. P.J. Flory, A. Vrij, J. Am. Chem. Soc. 85, 3548 (1963) CrossRefGoogle Scholar
  14. T. Hugel, G. Strobl, R. Thomann, Acta Polym. 50, 214 (1999) CrossRefGoogle Scholar
  15. S. Magonov, Y. Godovsky, Am. Lab. 31, (1999) Google Scholar
  16. T. Hippler, S. Jiang, G. Strobl, Macromolecules, in press (2005) Google Scholar
  17. G. Matsuba, K. Kaji, K. Nishida, T. Kanaya, M. Imai, Polymer J. 31, 722 (1999) CrossRefGoogle Scholar
  18. N.V. Pogodina, S.K. Siddiquee, J.W. van Egmond, H.H. Winter, Macromolecules 32, 1167 (1999) CrossRefGoogle Scholar
  19. P.D. Olmsted, W.C.K. Poon, T.C.B. McLeish, T.C.B. Terrill, A.J. Ryan, Phys. Rev. Lett. 81, 373 (1998) CrossRefADSGoogle Scholar
  20. B. Heck, T. Hugel, M. Iijima, G. Strobl, Polymer 41, 8839 (2000) CrossRefMathSciNetGoogle Scholar
  21. B. Heck, G. Strobl, M. Grasruck, Eur. Phys. J. E 11, 117 (2003) CrossRefGoogle Scholar
  22. P.J. Flory, Principles of Polymer Chemistry (Cornell University Press, 1953), p. 570 Google Scholar
  23. M. Grasruck, G. Strobl, Macromolecules 36, 86 (2003) CrossRefGoogle Scholar
  24. T. Hugel, Diplomarbeit, Fakultät für Physik, Universität Freiburg (1999) Google Scholar
  25. M. Al-Hussein, G. Strobl, Macromolecules 35, 1672 (2002) Google Scholar
  26. E.B. Sirota, A.B. Herhold, Science 283, 529 (1999) CrossRefADSGoogle Scholar
  27. L. Li, C.M. Chan, K.L. Yeung, J.X. Li, K.M. Ng, Y. Lei, Macromolecules 35, 316 (2001) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Physikalisches Institut, Albert-Ludwigs-Universität FreiburgFreiburgGermany

Personalised recommendations