Advertisement

The European Physical Journal E

, Volume 16, Issue 2, pp 199–206 | Cite as

Predicting the mechanical properties of spider silk as a model nanostructured polymer

  • D. Porter
  • F. Vollrath
  • Z. Shao
Regular Articles

Abstract.

Spider silk is attractive because it is strong and tough. Moreover, an enormous range of mechanical properties can be achieved with only small changes in chemical structure. Our research shows that the full range of thermo-mechanical properties of silk fibres can be predicted from mean field theory for polymers in terms of chemical composition and the degree of order in the polymer structure. Thus, we can demonstrate an inherent simplicity at a macromolecular level in the design principles of natural materials. This surprising observation allows in depth comparison of natural with man-made materials.

Keywords

Polymer Mechanical Property Neural Network Field Theory Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Fox, New Scientist, 24 April 1999, pp. 38–41 Google Scholar
  2. F. Vollrath, Reviews in Molecular Biotechnology 74, 67 (2000)Google Scholar
  3. Z. Shao, F. Vollrath, Nature 418, 741 (2002)Google Scholar
  4. F. Vollrath, D. Knight, in Handbook of Biopolymers, edited by A. Steinbüchel, S. Fahnestock (Wiley-VCH, Heidelberg and New York, 2003), Chap. 2, p. 25 Google Scholar
  5. Z. Shao, Y. Yang, X. Chen, P. Zhou, D. Knight, D. Porter, F. Vollrath, Spider silk performs as much tougher material at low temperatures, Adv. Mater. (in press) Google Scholar
  6. D.T. Grubb, L.W. Jelinski, Macromolecules 30, 2860 (1997)Google Scholar
  7. J.D. van Beek et al., PNAS 99, 10266 (2002)Google Scholar
  8. B.L. Thiel et al., Biopolymers 34, 1089 (1994); B.L. Thiel, Biopolymers 41, 703 (1997)Google Scholar
  9. J.M. Gosline et al., in Silk Polymers: Materials Science and Biotechnology, edited by Kaplan et al., ACS Symposium Series 544 (ACS Press, New York, 1994), Chap. 27, p. 328 Google Scholar
  10. M.A. Becker et al., in Silk Polymers: Materials Science and Biotechnology, edited by Kaplan et al., ACS Symposium Series 544 (ACS Press, New York, 1994), Chap. 17, p. 185 Google Scholar
  11. Y. Termonia, Macromolecules 27, 7378 (1994)Google Scholar
  12. M.J. Forster, Micron 33, 365 (2002)Google Scholar
  13. J.J.M. Baltussen, M.G. Northolt, Polymer 40, 6113 (1999)Google Scholar
  14. A. Galeski, Prog. Polym. Sci. 28, 1643 (2003)Google Scholar
  15. D. Porter, Group Interaction Modelling of Polymer Properties (Marcel Dekker, New York, 1995) Google Scholar
  16. M.J. Buehler, F.F. Abraham, H. Gao, Nature 426, 141 (2003)Google Scholar
  17. D. Porter, Mat. Sci. Eng. A 365, 38 (2004)Google Scholar
  18. M. Xu, R.V. Lewis, Proc. Natl. Acad. Sci. USA 87, 7120 (1990)Google Scholar
  19. D.W. van Krevelen, Properties of Polymers (Elsevier, Amsterdam, 1993) Google Scholar
  20. J. Bicerano, Prediction of Polymer Properties (Marcel Dekker, New York, 1993) Google Scholar
  21. J. Rossmeisl et al., J. Chem. Phys. 118, 9783 (2003)Google Scholar
  22. Molecular mechanics and dynamics simulations performed on the Cerius2 system of Accelrys Inc.: see http://www.Accelrys.com Google Scholar
  23. B. Wunderlich, S.Z.D. Cheng, K. Loufakis, Thermodynamic Properties in Encyclopedia of Polymer Science and Engineering, Vol. 16 (Wiley-Interscience, New York, 1989) Google Scholar
  24. H.S. Bu, S.Z.D. Cheng, B. Wunderlich, J. Phys. Chem. 91, 4179 (1987)Google Scholar
  25. V.V. Tarasov, G.A. Yunitskill, Russian J. Phys. Chem. 39, 1109 (1965)Google Scholar
  26. N.G. McCrum, B.E. Read, G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (John Wiley and Sons, London, 1967) Google Scholar
  27. A. Bondi, Physical Properties of Molecular Crystals, Liquids, and Glasses (John Wiley and Sons Inc., New York, 1969), p. 401 Google Scholar
  28. F. Vollrath, Proc. R. Soc. Lond. B 268, 2339 (2001)Google Scholar
  29. Z. Shao, F. Vollrath, Polymer 40, 1799 (1999)Google Scholar
  30. D. Porter, J. Non-Newtonian Fluid Mech. 68, 141 (1997)Google Scholar
  31. J. Perez-Rigueiro et al., J. Appl. Polym. Sci. 82, 2245 (2001)Google Scholar
  32. A. Lazaris et al., Science 295, 472 (2002)Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of ZoologyUniversity of OxfordOxfordUK
  2. 2.Department of Macromolecular Science and Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, Fudan UniversityShanghaiP.R. China

Personalised recommendations